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HBO(R) + AP IS CLOSED

STEPHEN POWER1

Abstract. Let HX(R) be the space of functions on the real line R which

are boundary functions of functions bounded and analytic in the upper half-

plane and let AP denote the space of uniformly almost periodic functions on

R. We show that H°° (R) + AP is closed and is not an algebra.

Introduction. Let H°° denote the space of essentially bounded measurable

functions on the unit circle T whose negative Fourier coefficients vanish and

let C denote the continuous functions on T. Sarason [4] has shown that

H°° + C is closed. More recently Rudin [3] has shown how this result and

natural generalisations of it follow from a simple abstract Banach space

closure theorem. We shall use Rudin's theorem to prove a similar result for

functions on the real line where C is replaced by AP, the space of uniformly

almost periodic functions. The key ingredient of Rudin's theorem is a set of

maps which form a bounded approximate identity for the C component. Here

we shall use the existence of an invariant mean on the bounded functions on

R to define a set of maps on LCC(R) which is a bounded approximate identity

for AP corresponding to the classical convergence of Bochner-Fejér polyno-

mials to uniformly almost periodic functions.

We ask whether certain abstract spaces of type H00 + C are always closed.

Such a result would include our result, Sarason's result and several of Rudin's

generalisations.

Theorem 1 (Rudin [3]). Let Y and Z be closed subspaces of a Banach space

X and let $ be a family of bounded linear maps A on X such that

(a) A maps X into Y, A E $,

(b) A maps Z into Z, A £ $,

(c)sup{||A||; A GO} < oo,

(d)for each y E Y and s. > 0 there exists A E $ such that \\Ay - y\\ < e.

Then Y + Z is closed.

Notation. The usual Fejér kernel on R is given by
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i / sin(«//2) \       „   /        Ul \

K(t) = i       . \    ,/      =   S     1 -U Ig-' '        (»6/V).
"W      « \  sin(i/2)  /      vf<n\        n ) * >

Let Knß(t) = IIi <,-<,, #„,(/?, 0> wnere ßv Bl> • ■ ■ > ßp are real numbers and

n¡ E N (1 < i < />). These are the Bochner-Fejér kernels [1, p. 46]. For

f E AP the mean

M(f) =  Hm ±j,£Tf(s)ds

always exists [1, p. 12]. Thus for/ E AP we can consider

%ß(x) = M(fixKaß)

where f_x(t) = f(t + x), x E R. Since M is translation invariant a simple

computation shows that

<V«M =    2    (l - ^) • • • (l - ^)M{f(t)e-^')e^X,

where <\v, ß> = ^/îi + ^^2 + ' ' ' + vpßp- ^e cau °nfl ^e Bochner-Fejér

polynomial for / corresponding to n, ß.

The following approximation theorem can be found in [1, p. 50].

Theorem 2. For each f in AP there exist Bochner-Fejér polynomials for f

converging uniformly to f.

Extending invariant means. Let B(R) be the space of bounded complex

functions on the real line. For/in B(R) and x in R \etfx be the translate of/

defined by fx(y) = f(y - x) (y E R).

Definition. If W is a subspace of B(R) (or LX(R)) which is closed under

translation and contains the constant functions, then an invariant mean on W

is a linear functional m such that ||m|| = m(\) = 1 and m(fx) = m(f) (f

E W, x E R).

The following theorem, whose proof we omit, is a simple corollary of

Theorem 17.5 in [2].

Theorem 3. There exists an invariant mean on B(R).

The next theorem allows us to extend the mean M to an invariant mean on

L°°(R). With this state we construct the maps A necessary for the application

of Rudin's theorem.

Theorem 4. Let W be a closed translation invariant subspace of LX(R)

containing the constant functions and let M0 be an invariant mean on W. Then

there exists an invariant mean M on Lco(i?) extending M0.

Proof. By Theorem 3 there exists an invariant mean, m say, on B(R). Let
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JWj be a state on LX(R) extending M0. For g E L°°(R) define <pg e B(R) by

<f> (y) = Mx(g) for y in Ä. Now define M on L°°(i?) by M(g) = m(<bg). It is

straightforward to verify that M is an invariant mean on LX(R) extending M0.

The main result. Let Hœ(R) be the space of boundary value functions of

bounded analytic functions in the open upper half-plane.

Theorem 5. H°°(R) + AP is closed.

Proof. Let W be the space of functions/in U°(R) such that the mean

M(f) exists. Then M is an invariant mean on the translation invariant

subspace W. By Theorem 4 there exists an invariant mean M on L°°(R)

extending M.

Define Anß on LX(R) by

(K,ßf)(*) = M(f-xKn<ß)       (f E L»{R)).

Since M is a state and Knß(t) >0((6Ä),

(o i(AM/)(x)i < w/wm^ß) = ii/ii-

Since M is translation invariant it follows that

» (A*»/)W = ►& (' - Ï) '' '(' - ¥)*(/(,)c"'<"f>' >e,<"e>*'

Thus

(3) An,p:L"tfD -^.

For/in .4P, by Theorem 2, there exist A^ in {An ß) for k = 1,2,..., such

that A^V^/fn LX(R) as A: -» oo. In view of this'and (1) and (3) above, to

show that H°°(R) + AP is closed it suffices to show that A%ß: H°°(R)

-* HX(R). For then we can apply Theorem 1 with L°°(R) in place of X,

HCC(R) in place of Z, AP in place of Y and {An ß) in place of $. In fact by (2)

it will be sufficient to show that M{f(t)eiXt) = 0 for X > 0 and /in H°°(R).

For/in H°°(R) and X > 0 we have

f*Tf(t)eiXtdt=fcf(z)eiX*dz,

where C is the semicircular contour from —T to 7" in the upper half-plane.

Thus

£ f(t)eiXtdt   <\\fLf \eiX*\\dz\

< II/ILoVa-
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It follows that M{f(t)e,Xt} exists and is zero, completing the proof.

The following similar result has been proved by Sarason in [5]. If BUC

denotes the space of bounded uniformly continuous functions on R then

H^iR) + BUC is closed. In fact he shows that HX(R) + BUC is the closed

linear span of functions of the form e'Xxf(x) where X is real and/belongs to

H°°(R). In particular HX(R) + BUC is an algebra (as is Hx + C). It is now

easy to see that H°°(R) + AP cannot be an algebra. For if it were then since

e~iXx is in AP, by Theorem 5 and the above we see that H°°(R) + AP =

Hco(R) + BUC. This implies that BUC is contained in HX(R) + AP which

is false since M {/} need not exist for/in BUC.

Problem. Let F be a commutative family of normal operators on a Hubert

space. Let H00 denote the weakly closed algebra generated by F and let C be

the C*-algebra generated by F. Is H°° + C closed?
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