$H^{\infty}(R) + AP$ IS CLOSED

STEPHEN POWER¹

ABSTRACT. Let $H^{\infty}(R)$ be the space of functions on the real line R which are boundary functions of functions bounded and analytic in the upper half-plane and let AP denote the space of uniformly almost periodic functions on R. We show that $H^{\infty}(R) + AP$ is closed and is not an algebra.

Introduction. Let H^{∞} denote the space of essentially bounded measurable functions on the unit circle T whose negative Fourier coefficients vanish and let C denote the continuous functions on T. Sarason [4] has shown that $H^{\infty} + C$ is closed. More recently Rudin [3] has shown how this result and natural generalisations of it follow from a simple abstract Banach space closure theorem. We shall use Rudin's theorem to prove a similar result for functions on the real line where C is replaced by AP, the space of uniformly almost periodic functions. The key ingredient of Rudin's theorem is a set of maps which form a bounded approximate identity for the C component. Here we shall use the existence of an invariant mean on the bounded functions on R to define a set of maps on $L^{\infty}(R)$ which is a bounded approximate identity for AP corresponding to the classical convergence of Bochner-Fejér polynomials to uniformly almost periodic functions.

We ask whether certain abstract spaces of type $H^{\infty} + C$ are always closed. Such a result would include our result, Sarason's result and several of Rudin's generalisations.

THEOREM 1 (RUDIN [3]). Let Y and Z be closed subspaces of a Banach space X and let Φ be a family of bounded linear maps Λ on X such that

- (a) Λ maps X into Y, $\Lambda \in \Phi$,
- (b) Λ maps Z into Z, $\Lambda \in \Phi$,
- (c) $\sup\{\|\Lambda\|; \Lambda \in \Phi\} < \infty$,
- (d) for each $y \in Y$ and $\varepsilon > 0$ there exists $\Lambda \in \Phi$ such that $||\Lambda y y|| < \varepsilon$. Then Y + Z is closed.

NOTATION. The usual Fejér kernel on R is given by

Received by the editors October 27, 1976.

AMS (MOS) subject classifications (1970). Primary 46E15, 46J15.

Key words and phrases. Analytic functions, uniformly almost periodic functions, invariant mean, Bochner-Fejér polynomials, Banach space.

¹ This research was supported by the Science Research Council.

C American Mathematical Society 1977

$$K_n(t) = \frac{1}{n} \left(\frac{\sin(nt/2)}{\sin(t/2)} \right)^2 = \sum_{|\nu| < n} \left(1 - \frac{|\nu|}{n} \right) e^{-i\nu t} \qquad (n \in N).$$

Let $K_{\mathbf{n},\boldsymbol{\beta}}(t) = \prod_{1 \leq i \leq p} K_{n_i}(\beta_i t)$, where $\beta_1, \beta_2, \ldots, \beta_p$ are real numbers and $n_i \in N \ (1 \leq i \leq p)$. These are the Bochner-Fejér kernels [1, p. 46]. For $f \in AP$ the mean

$$M(f) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(s) \, ds$$

always exists [1, p. 12]. Thus for $f \in AP$ we can consider

$$\sigma_{\mathbf{n},\boldsymbol{\beta}}(x) = M(f_{-x}K_{\mathbf{n},\boldsymbol{\beta}})$$

where $f_{-x}(t) = f(t+x)$, $x \in R$. Since M is translation invariant a simple computation shows that

$$\sigma_{\mathbf{n},\boldsymbol{\beta}}(x) = \sum_{\substack{|\nu_1| < n_1 \\ \vdots \\ |\nu_p| < n_p}} \left(1 - \frac{|\nu_1|}{n_1}\right) \cdots \left(1 - \frac{|\nu_p|}{n_p}\right) M\{f(t)e^{-i\langle \boldsymbol{\nu}, \boldsymbol{\beta} \rangle t}\} e^{i\langle \boldsymbol{\nu}, \boldsymbol{\beta} \rangle x},$$

where $\langle \nu, \beta \rangle = \nu_1 \beta_1 + \nu_2 \beta_2 + \cdots + \nu_p \beta_p$. We call $\sigma_{n,\beta}$ the Bochner-Fejér polynomial for f corresponding to n, β .

The following approximation theorem can be found in [1, p. 50].

THEOREM 2. For each f in AP there exist Bochner-Fejér polynomials for f converging uniformly to f.

Extending invariant means. Let B(R) be the space of bounded complex functions on the real line. For f in B(R) and x in R let f_x be the translate of f defined by $f_x(y) = f(y - x)$ ($y \in R$).

DEFINITION. If W is a subspace of B(R) (or $L^{\infty}(R)$) which is closed under translation and contains the constant functions, then an invariant mean on W is a linear functional m such that ||m|| = m(1) = 1 and $m(f_x) = m(f)$ ($f \in W, x \in R$).

The following theorem, whose proof we omit, is a simple corollary of Theorem 17.5 in [2].

THEOREM 3. There exists an invariant mean on B(R).

The next theorem allows us to extend the mean M to an invariant mean on $L^{\infty}(R)$. With this state we construct the maps Λ necessary for the application of Rudin's theorem.

THEOREM 4. Let W be a closed translation invariant subspace of $L^{\infty}(R)$ containing the constant functions and let M_0 be an invariant mean on W. Then there exists an invariant mean \tilde{M} on $L^{\infty}(R)$ extending M_0 .

PROOF. By Theorem 3 there exists an invariant mean, m say, on B(R). Let

 M_1 be a state on $L^{\infty}(R)$ extending M_0 . For $g \in L^{\infty}(R)$ define $\phi_g \in B(R)$ by $\phi_g(y) = M_1(g_y)$ for y in R. Now define \tilde{M} on $L^{\infty}(R)$ by $\tilde{M}(g) = m(\phi_g)$. It is straightforward to verify that \tilde{M} is an invariant mean on $L^{\infty}(R)$ extending M_0 .

The main result. Let $H^{\infty}(R)$ be the space of boundary value functions of bounded analytic functions in the open upper half-plane.

THEOREM 5. $H^{\infty}(R) + AP$ is closed.

PROOF. Let W be the space of functions f in $L^{\infty}(R)$ such that the mean M(f) exists. Then M is an invariant mean on the translation invariant subspace W. By Theorem 4 there exists an invariant mean \tilde{M} on $L^{\infty}(R)$ extending M.

Define $\Lambda_{\mathbf{n},\beta}$ on $L^{\infty}(R)$ by

$$(\Lambda_{\mathbf{n},\boldsymbol{\beta}}f)(x) = \tilde{M}(f_{-x}K_{\mathbf{n},\boldsymbol{\beta}}) \qquad (f \in L^{\infty}(R)).$$

Since \tilde{M} is a state and $K_{n,B}(t) \geqslant 0$ $(t \in R)$,

(1)
$$|(\Lambda_{\mathbf{n},\beta}f)(x)| \leq ||f||\tilde{M}\{K_{\mathbf{n},\beta}\} = ||f||.$$

Since \tilde{M} is translation invariant it follows that

(2)
$$(\Lambda_{\mathbf{n},\boldsymbol{\beta}}f)(x) = \sum_{\substack{|\nu_1| < n_1 \\ \vdots \\ |\nu_p| < n_p}} \left(1 - \frac{|\nu_1|}{n_1}\right) \cdots \left(1 - \frac{|\nu_p|}{n_p}\right) \tilde{M} \left\{f(t)e^{-i\langle \boldsymbol{\nu}, \boldsymbol{\beta} \rangle t}\right\} e^{i\langle \boldsymbol{\nu}, \boldsymbol{\beta} \rangle x}.$$

Thus

(3)
$$\Lambda_{\mathbf{n},\boldsymbol{\beta}} \colon L^{\infty}(R) \to AP.$$

For f in AP, by Theorem 2, there exist $\Lambda^{(k)}$ in $\{\Lambda_{\mathbf{n},\boldsymbol{\beta}}\}$ for $k=1,2,\ldots$, such that $\Lambda^{(k)}f\to f$ in $L^{\infty}(R)$ as $k\to\infty$. In view of this and (1) and (3) above, to show that $H^{\infty}(R)+AP$ is closed it suffices to show that $\Lambda_{\mathbf{n},\boldsymbol{\beta}}\colon H^{\infty}(R)\to H^{\infty}(R)$. For then we can apply Theorem 1 with $L^{\infty}(R)$ in place of X, $H^{\infty}(R)$ in place of Z, AP in place of Y and $\{\Lambda_{\mathbf{n},\boldsymbol{\beta}}\}$ in place of Φ . In fact by (2) it will be sufficient to show that $\tilde{M}\{f(t)e^{i\lambda t}\}=0$ for $\lambda>0$ and f in $H^{\infty}(R)$.

For f in $H^{\infty}(R)$ and $\lambda > 0$ we have

$$\int_{-T}^{T} f(t)e^{i\lambda t} dt = \int_{C} f(z)e^{i\lambda z} dz,$$

where C is the semicircular contour from -T to T in the upper half-plane. Thus

$$\left| \int_{-T}^{T} f(t)e^{i\lambda t} dt \right| \leq ||f||_{\infty} \int_{C} |e^{i\lambda z}| |dz|$$
$$\leq ||f||_{\infty} \pi/\lambda.$$

It follows that $M\{f(t)e^{i\lambda t}\}$ exists and is zero, completing the proof.

The following similar result has been proved by Sarason in [5]. If BUC denotes the space of bounded uniformly continuous functions on R then $H^{\infty}(R) + BUC$ is closed. In fact he shows that $H^{\infty}(R) + BUC$ is the closed linear span of functions of the form $e^{i\lambda x}f(x)$ where λ is real and f belongs to $H^{\infty}(R)$. In particular $H^{\infty}(R) + BUC$ is an algebra (as is $H^{\infty} + C$). It is now easy to see that $H^{\infty}(R) + AP$ cannot be an algebra. For if it were then since $e^{-i\lambda x}$ is in AP, by Theorem 5 and the above we see that $H^{\infty}(R) + AP = H^{\infty}(R) + BUC$. This implies that BUC is contained in $H^{\infty}(R) + AP$ which is false since $M\{f\}$ need not exist for f in BUC.

Problem. Let F be a commutative family of normal operators on a Hilbert space. Let H^{∞} denote the weakly closed algebra generated by F and let C be the C^* -algebra generated by F. Is $H^{\infty} + C$ closed?

REFERENCES

- 1. A. S. Besicovitch, Almost periodic functions, Dover, New York, 1955. MR 16, 817.
- 2. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I, Academic Press, New York; Springer-Verlag, Berlin 1963. MR 28 # 158.
- 3. W. Rudin, Spaces of type $H^{\infty} + C$, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 1, 99–125. MR 51 #13692.
- **4.** D. Sarason, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc. 127 (1967), 179–203. MR 34 #8193.
 - 5. ——, Functions of vanishing mean oscillation (preprint).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF EDINBURGH, EDINBURGH EH1 1HZ, SCOTLAND

Current address: Department of Mathematics, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada