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GENERIC MORSE-SMALE DIFFEOMORPHISMS
HAVE ONLY TRIVIAL SYMMETRIES

YOSHIO TOGAWA

ABSTRACT. The purpose of this paper is to prove that for a C!-generic
Morse-Smale diffeomorphism f, the set of symmetries of f, Z (f), is equal to
(f!lk € ).

1. Introduction. Let M be a compact connected C*-manifold without
boundary. Let Diff(M) be the set of C!-diffeomomrphisms of M with
C!-topology. Let MS denote the open set of all Morse-Smale diffeomor-
phisms of M in Diff(M) [5]. For f € Diff(M) we say g € Diff(M) is a
symmetry of fiff f o g = g o f. Then the centralizer Z (f) of f is the set of all
symmetries of f. Clearly, f* is a symmetry of f for any k € Z (Z is the set of
integers). We call such symmetries trivial symmetries. A proper symmetry is a
symmetry which is not trivial. The following question is posed by N. Kopell
[4] and J. Palis [6].

Is the set of diffeomorphisms without proper symmetry generic in Diff(M)?
In this paper, we shall prove the following theorem which gives an affirma-
tive solution of the conjecture in MS.

THEOREM. It is C'-generic in MS that f has no proper symmetry.

The referee pointed out that the work of Boyd Anderson in [1] is closely
related to ours. See also [2].

I would like to thank Professor Hiroshi Noguchi for his kind advice. I
would also like to thank the referee for pointing out how to overcome an
error in the proof of Lemma 5.1.

2. Proof of the Theorem. Choose a riemannian metric on M. For a tangent
vector v we let ||v]|| denote the length of v by this riemannian metric. Let
J'(M) denote the l-jet space on M (= U,y L(T M, T,M)), and =;:
J'(M)— M (i = 1,2) denote the projections, i.e., m;(a) = x, m(a) = y for
a € L(T,M, T, M). For m € N (N is the set of natural numbers) we define
J'(M : m) as the set of all a’s in J (M) such that 1/m < ||av| < m, for any
tangent vector v of norm 1. We fix a countable basis ® of the topology of M
and a countable dense subset M* of M. Let
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T'={(U, xo, m)|U € O, xg € M*, xo € U,m € N}.

DEFINITION 2.1. Let { B(U, x4, m)}r be the family defined as follows; for
(U, x4, m) €T, B(U, x,, m) is the set of all Morse-Smale diffeomorphism f’s
which have a mapping S: Oy(xp) —» J 1(M: m) satisfying the following condi-
tions;

(i) 7, o S = identity,

(i) 7, > S (xy) & Oy(U) and

(ii)) Tf ° S(x) = S(f(x)) ° T,f, for any x inOy(x,), where Oy(x,) denotes
the orbit of x,,.

REMARK. Condition (iii) implies that

f(my e 8(x)) = my 2 S(f(x))
for any x € Oy(x,). Therefore (ii) implies that

(i) 7, o S(x) € O(U) for any x € Oy(xy).

In order to prove the Theorem it is sufficient to verify Propositions 2.1, 2.2
and 2.3.

PROPOSITION 2.1. If f € MS has a proper symmetry, then f is contained in
one of B(U, x4, m)’s.

PROPOSITION 2.2. Each B (U, x4, m) is closed.
PROPOSITION 2.3. Each B (U, x,, m) has no interior point.
In the following sections, we shall prove these propositions.

3. Proof of Proposition 2.1. We need the following lemma:

LEMMA 3.1. Let f € MS and g € Diff(M). Suppose that g(x) € Oy(x) for
any x € M* — per f. Then g is a trivial symmetry of f.

PrOOF. Let A4, = {x € M — per f|g(x) = f*(x)}. Then the family
{A;}xez is disjoint, each A, is closed in M — per f, and M* — per f is
contained in U 4,. Let ¥ be a connected open set such that CI(V) c M —
per f. Since V is open, ¥ N M* is dense in CI(V). We claim that CI(V) C 4,
for some k € Z. Let Q,(x) = {y € M|d(x,y) < ¢}. Since CI(V') consists
only of wandering points, there exists ¢ > 0 such that f*(Q,(x)) N f(Q,(x))
= @ for any distinct integers n and n’, and any x € CI(V) because of the
compactness of CI(V). Then there exists ¢ > 0 such that g(Q.(x)) C
F¥(Q.(x)) for any x € 4, N V. Notice that ¢’ depends on k but this presents
no problem. Let x* € 4, N V N M*. Since g(Q.(x*)) is contained in
fX(Q.(x*) and M* N V C U4,, Q.(x*) N M* is contained in A,. This
implies that Q,(x*) C A,, and since V is connected, ¥ is contained in 4,.

Let By, ..., B, denote the connected components of M — per f. We can
choose a connected open set ¥ for any points x and y in B, such that
x,y € CI(V) C B;, so B, is contained in 4, for some k € Z.

If dim(M) > 2, then M — per f is connected, and equivalently, M — per f
= B,; hence g is trivial.
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If dim(M) = 1, equivalently, M = S, g can be nontrivial only if there is a
periodic point p such that g = f* in the right neighbourhood of p and g = f*
in the left neighbourhood of p. But this contradicts with the assumption that p
is hyperbolic. Hence g is trivial.

PROOF OF PROPOSITION 2.1. Let f be a Morse-Smale diffeomorphism with a
proper symmetry g. By Lemma 3.1, we can choose a point x, € M* — per f
such that g(x,) &€ Oy(xo). We show that we can choose U € © such that
xo € U and Oy(g(xp)) N O;(U) = @. Since x, & nonwandering set, it is not
in either a- or w-limit set of g(x,); since it is by hypothesis not in O(g(x,)),
we can conclude that the point x, does not belong to the closed set
Cl(O,(g(xp))), so there exists a neighbourhood U € © of x, disjoint from
O/(g(xo)); but then O(U) N O,(g(xy)) = Q. Let us choose m € N such that
m > max(|| Tgv||, || Tg "'v||) for any v € TM of norm 1. Define S(x) by
S(x) = T,g for x € Oy(x,). It is clear that f € B(U, xo, m).

4. Proof of Proposition 2.2. Suppose that a sequence {f,} of diffeomor-
phisms of B (U, x,, m) converges to f € Diff(M). For each f, we choose a
map S, which satisfies the conditions of Definition 2.1. Let us define a map S
for f as follows. Since J '(M: m) is compact, the sequence S,(x,) has cluster
points. Define S (x,) to be one of the cluster points. Then S(x,) € J'(M: m)
and 7, ° S(xp) = x,. We define

S: 0;(x0) > J ' (M: m)
by
S(x) = Tf* e S(xo) ° Tf *|T M
for x, = f¥(x,), where T, M denotes the tangent plane on x,. Clearly S
satisfies conditons (i) and (iii)) of Definition 2.1. We check that S satisfies
condition (ii). First notice that

f* ('”2 ° 8(xg)) C Cl({f: ('”2 ° S, (xO))}nen)

since m, ° S(xp) is a cluster point of {7, ° S,(xg)},en and {f¥},en con-
verges to f* for any fixed k. But since any f*(x,  S,(x,)) is not in U, neither
is f¥(m, ° S(xp)) in U; this implies condition (ii) of Definition 2.1.

5. Proof of Proposition 2.3. Let p: R? > R? be a C*®-function with the
following properties:

(1) max(|lll, [| Dol < 1,

(i1) p(0) = 0 and Dp(0) = identity, and

(iii) p(x) = O for any ||x| > 1.

DEFINITION 5.1. A number sequence {a,} — 0 is called of exponential type
iff for somea > 0and K > 0,4"/K < a, < Ka" for any n € N.

LEMMA 5.1. Let L: R? - R? be a semisimple linear contraction, i.e., L has a
matrix (a;) such that
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@yi—1pi-1 =|NJcos B, ay_ 5 = —[\sin b,
Bii-1 = P\iISin 0, Aripi = |}\i|c°S 0,
for 1 < i < ¢, and a; = \, for 2q' < i, and the others = 0 for some 0 < q' <
q/2and 0 < A\ < 1.

Let B={x €RY|||x|| <1} and ¢, = (1,0,...,0). Suppose that 0 # x, €
B and let U € B be an open neighbourhood of x, such that L"(U) n L"(U) =
@ for any distinct integers n and n'. Then for any ¢ > O there is a C'-local
diffeomorphism f: B — R such that

(i) Max(|| f — LI|, |IPf — DL|)) <,

(i) f|B — O(U) = L|B — O,(V),

(iii) the sequence {|| Df"(xo)e, ||} is not of exponential type.

Proor. Let x, = L"X,, We ¢hoose &(n) such that 0 < §(n) <
min(||x,|| /2, d(x,, B — L"(U))) for n € N. Define p, by

oa(x) = €8 (n)p(x/8 (n)).

We define f by
and
f(x) = Lx + p, 1y (L(x = x,))/ (n + 1)
for x € L"(U). Then f is well defined as a continuous mapping and of class
C'on B — {0}. Since
IDf(x) = LIl < |1Dpysrll - ILII/ (n + 1) <&/ (n + 1)

for x € L"(U), then Df(x) > L as x — 0, and hence f is continuously
differentiable at 0. Clearly C'-distance between f and L is less than ¢, so fis a
diffeomorphism provided that ¢ is sufficiently small.

Now we check that the convergence of the sequence || Df"(xg)e,|| is not of
exponential type. Let e’ = Df"(xg)e,. Then

let™ Il = 1 Df (x)elll = (Au]+Asfe/ (m + 1))llef

and

i=n

107 (xo)eall = llefl = T hoj(1 + e/

i=
Notice that the convergence of the sequence {||e/'||} is of exponential type iff
the sequence II'Z;(1 + ¢/i) converges. But since a sequence [I(1 + a,) con-
verges iff a, does [4, Theorem 3, p. 94], the sequence {||ef’||} is not of
exponential type.

PROOF OF PROPOSITION 2.3. Let f € B(U, x,, m). We approximate f by a
Morse-Smale diffeomorphism which is not in B(U, x4 m). We first ap-
proximate f by f, which has the following properties:

(i) there exists a sink p of f; such that x, € W*(p),

(i) for any periodic point g of f,, setting /(g) equal to the period of g under
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fi» 1@ is semisimple linear in some chart.

Since B (U, xy, m) C B(U’, xo, m) for any neighbourhood U’ of x, such
that U’ € ©® and U’ C U, we can suppose, without loss of generality, U C
W*(p) and f7(U) N f7'(U) = @ for any distinct integers n and n’. By (ii), if
{I|Tfv||} converges to 0, then the convergence is of exponential type for any
nonzero tangent vector v. Let us perturb f; near p, as in Lemma 5.1, by taking
£, as the linear map L. Then we get an approximation f, of f; with a tangent
vector v on x, such that the sequence {||Tf;v||} is not of exponential type.
Then we show that f, & B (U, x,, m). Suppose the contrary, and consider the
sequence

{18 (x) Tfzoll} = {I TS (xo)0ll}
where S is a map for f, in Definition 2.1. Since S (xg)v is a tangent vector on
M — O, (U) and f, coincides with f; on O,(U) = Oy, (U), the sequence
{IS (x,)Tf7oll} = {|| Tf3S (xo)v||} is of exponential type. Since
I Tf3oll/m < IS (x,)Tfol < m| Tfo|
by Definition 2.1, so
IS () Tfoll/m < | Tfoll < m||S (x,)Tfol.

But {||S (x,)Tfjv||} is of exponential type; then {!|Tf7v||} is also of exponen-
tial type, a contradiction.
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