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QUASISIMILARITY DOES NOT PRESERVE THE
HYPERLATTICE

DOMINGO A. HERRERO

Abstract. Two quasisimilar nilpotent Hubert space operators of order three

can have nonisomorphic hyperinvariant subspace lattices.

1. Introduction. Let ft(%) be the algebra of all (bounded linear) operators

acting on the complex separable Hubert space %. If X E £(%) and Ker X

= Ker X* = {0}, then X is called a quasiaffinity. If A, B G £(%) and there

exist X, Y such that AX = XB and Y A = BY, then A and B are said to be quasi-

similar. It is known that if A and B are quasisimilar operators, and A has a non-

trivial hyperinvariant (i.e., invariant under the commutant &'(A) of A) subspace,

then so doesfi (see [4], [7], [9]). Furthermore, if A is normal then quasisimilarity

induces an injection from Hyperlat A into Hyperlat B (see [8] ; Hyperlattice is an

abbreviation for lattice of hyperinvariant subspaces), so one could expect that

quasisimilar operators always have isomorphic hyperlattices. An example will show

that this is not necessarily true, even for very simple operators.

The author wishes to thank the referee for correcting several misprints and

for helpful suggestions.

2. The hyperlattice of certain nilpotent operators.

Lemma 1. Let Q be a nilpotent operator of order three (Q3 = 0). Then

Ker Q2 ((Ran Q2)~, resp.) is a maximal (minimal, resp.) hyperinvariant sub-

space of Q.

Proof. Let

0) Q =
0    Qn    on
0      0      Q23

.0      0        0 .

be the matrix of Q with respect to the orthogonal direct sum decomposition

% = %x © % 0 X,, where %x = Ker Q, % - Ker Q2 0 Ker Q and %

= % © Ker Q2. Then [3] Qx2 and Q23 are injective operators and therefore

their adjoints have dense ranges.
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A straightforward computation shows that the commutant of Q consists of

all those operators A E £(%) of the form

(2) A =

^11       ^12      ^13

0      A22    A23

0        0      A33

such that AXXQX2 = QX2A22, A22Q23 = Q23A33 and AlxQi3 + Al2Q23 = Ql2A23

+ QX3A33 (AX3 can be arbitrarily chosen).

Let 911 E Hyperlat Q and assume that <d\i is not contained in Ker Q2;

then there exists a vector (e,fg) in 91L (e E %x,f E %1, g E %¡) with

g =£ 0. Let A be as in (2) with Ajk = 0 for (j, k) ¥= (1, 3); then the hyperin-

variance of 91L implies that A(e,f, g) = (AX3g, 0, 0) E 91L. Since ̂ 413 can be

arbitrarily chosen, we conclude that 3C, C <5H. Hence (0,/, g) E 9)1.

Since Ran (2*3 is dense, there exists an/0 E OCj such that (Q23f0, g} = »■

Let /2 be an element of Xj and define B23 = f2® Ô23/0, BX2 = Ö12/2 ®/o

(where x®.y denotes the operator defined by x ® y(z) = (z, y)x) and

BJk = 0 for all (j,k)^(l, 2) or (2, 3). It is easily seen that B = (Bjk) E

&'(Q) and therefore 5(0,/, g) = (BX2f B23g, 0) = (fi12/,/2, 0) E 91L,

whence it readily follows that %x © % = Ker 02 c 911. Hence (0, 0, g) E

91L.

Now use the fact that Ran(QX2Q23)* is dense in order to obtain an e0 E %x

such that <(ôi2Ô23)*eo> g} ~ 1- Let g3 be an element of %, and define

C33 = £3 ® (612623)*«0. c22 = Ô23S3 • 0*2% cn = Ô12Ô23S3 ® eo> C12 =

013*3 ® 0*2% C23 = 623*3 ® 0*3*0 and tj* = 0 for all (J, k) *

(1, 1), (1, 2), (2, 2), (2, 3) or (3, 3). Then C = (Cjk) E &'(Q) and therefore
C(0, 0, g) = (0, C23g, C33g) = (0, C23g, g3) E 91L, whence we conclude that

9t - %.
The same arguments applied to Q* shows that Ker Q*2 is a maximal

hyperinvariant subspace of Q* and therefore (Ker Q*2)^ = (Ran Q2)~ is a

minimal hyperinvariant subspace of Q.     □

Corollary 2. // <Dlt E Hyperlat Q, Q3 = 0 a/u/ 911 ̂  {0}, X, iAtvj

(Ranf22)"c 911 cKer<22.

Let <k E £(C*) be the nilpotent operator defined by qkex = 0, qkej = e,_x

for/ = 2, 3, . . ., k, with respect to the canonical ONB {e,}*_, of C* and let

qk(otk) be the orthogonal direct sum of otk copies of qk acting in the usual

fashion on the orthogonal direct sum of otk copies of C*. An operator

J E £(0C) is a Jordan operator [2] if it can be written as J = ©J_ ,<&(<**.)

with respect to a suitable decomposition

n     I   <*k \

%

oi%.

Lemma 3. Let T E £(%), let E E â'(T) be an idempotent operator and let
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9H G Hyperlat T; then £911 = 9H n Ran £ G Hyperlat TE, where TE de-

notes the restriction of T to Ran E.

Let % be a subspace and let {£„J(,er be a uniformly bounded chain of

idempotents in &'(T) (if v < p in T, thenRan Ev c Ran E^) such that EV^>1

(strongly). If % « 2£9t-,  then   91 G Hyperlat T if and only if 9l„ G
Hyperlat 7^ for all v E T.

Proof. Since E = E2 E â'(T), for every A G &'(T) the restriction AE of

EAE to Ran E belongs to &'(TE).

Conversely, if B0 E &'(TE), then B0 can be extended to an element B of

&'(T) defined by Bx = B0x if x G Ran E and Bx = 0 if x G Ran(v" - E). It

readily follows that (£911)" G Hyperlat TE. On the other hand, it is easily

seen that £"911 = 911 n Ran £ and therefore £9H is closed. This proves the

first statement.

For the second one it is enough to observe that EVAEV —> A for every

A G £(%). Hence A E &'(T) if and only if ErAEr\Ran £„ G &'(TE) for all

v, whence the result follows.     □

Proposition 4. If J = ®nk_lqk(oik) is a Jordan operator, then Hyperlat/ is

the lattice generated by (Ker 7*,Ran Jk) (k = 0, 1, 2, . . . , n) and it is order-

isomorphic with Hyperlat © ™_i9*, where {kh}™=x is the subset of

{1, 2, . . . , n) corresponding to those indices such that ak =7*= 0.

Proof. Let PN be the orthogonal projection of % onto

' minla^.A']

%N - © ©     Cf.)
fc=l\      7-1

and let JN be the restriction of J to %N.

Then Hyperlat JN is generated by (Ker 7^, Ran/^: k = 0, 1, 2, . . . , «}

and it is order-isomorphic with Hyperlat ©"_1^)i (see [1], [5]). Now the result

follows from the analysis of the hyperlattice of a finite dimensional operator

carried out in the above references and Lemma 3.     □

3. The example. According to [2, Theorem 1] (or [10]), every nilpotent

operator in £(%) is quasisimilar to a Jordan operator.

Let % = C © lx2 © l\ © l¡ and let T G £(%) be the operator defined by

the matrix

(3) T =

0    0      0       Tx3a

0    0     TX2b      0

ooo     r23

.0    0       0 0

where Ti3a{{cn}) - 2».^/« (TX3a: l2^Q, Tm({en)) - {cj (rm;tf-*

/,2) and T23({cn}) = {c„/V} (T23:l?-> I2).

Proposition 5. Hyperlat 7 « í/¡e chain of five elements {0} c (Ran T2)~ c

Ker 7 c (Ran T)~ = Ker T2 c X.
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Corollary 6. There exist two quasisimilar nilpotent operators T and J of

order three such that Hyperlat T and Hyperlat J do not contain the same

(finite) number of elements. In particular, these lattices are not order-isomor-

phic.

Proof. Choose T given by (3). It is easily seen that F3 = 0, so that ([2,

Theorem 1]; see also [6], [10]) there exists a Jordan operator / quasisimilar to

T.

By Proposition 5, Hyperlat T has five elements, but, by Proposition 4 and

the results of [1], [5], Hyperlat J can only have four, six or eight elements.   □

Proof of Proposition 5. (Ran T2)~ = (Ran F12ftT23)_ = if, Ker T = C

© I2, Ker T2 = C © I2 © I2 and Ran T = {TX3ag,Tx2bf, T23g, 0:/ E l2,g E

¡i). Clearly, if c Ran T. Let/, = {c„ c2, .. ., cN, 0, 0, .. . } E l\, let X E C
and choose g„ = (c„ 4c2, . . ., N2cN, 0, 0,. . ., 0, d„, 0, . .. } E l¡, where d„

= n(X-2Z!J=xjcJ),n = 1, 2, . .. ; then

IIfío^o^-ím^o^k/«2!

<(l/n)(|X|+ £ yl0l)->°       (»->«,).

Therefore C © /22 c (Ran T)~, i.e. (Ran T)~ = C © if © /22 = Ker F2.

Let 9H E Hyperlat T, 911 ¥= {0},%. By Corollary 2, (Ran T2)~ c 911 c

Ker F2. Assume that (X, 0,/, 0) E 91Lfor some/ E /22J> 0, and let {/m}"_,

be the canonical ONB of /22. Let /? be the first nonzero coordinate of /, i.e.,

<ffp)^0 and define

0

0

0

A33(m)

where AXXb(m) = A22(m) - fm ® /,, ¿33(m) = (m/p)2fm ® fp and

y412o(w)({cn}) = wcp, w = 1, 2, 3, . . . . It can be easily checked that

{4X=i C &'(T) and that Am(X, 0,fi 0) = (AX2a(m)f, 0, A22(m)f, 0) =

</,/,> (An,0,/m,0)E91L.
Hence, (l/m<f,fpy)Am(K, 0,f, 0)^(1, 0, 0, 0) (w ^ oo) and therefore C

C 91. A fortiori, (0, 0,/m, 0) = (m, 0,fm, 0) - (m, 0, 0, 0) E 91L and there-

fore 91 = C © If © /22 = Ker F2.
On the other hand, if (X, 0,/, 0) E 9IL implies/ = 0, then it is easy to see

that either 9H = if = (Ran T)~ (and X = 0) or 91L = C © if = Ker T.   \J
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