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PEAK POINTS, BARRIERS AND

PSEUDOCONVEX BOUNDARY POINTS1

RICHARD F. BASENER

Abstract. Let x be a smooth boundary point of a domain in C. It is shown

that x is a limit of strictly pseudoconvex boundary points whenever there is

a "plurisubharmonic barrier" for x.

1. Introduction. Let D be an open subset of C and, as usual, let

A (D ) = { / E C (D )\f is holomorphic on D j.

If D is bounded then A(D) is a uniform algebra on D and in this case we let

S(D) denote the Shilov boundary of A (D), a subset of 3Z).

The problem of characterizing S(D) for certain pseudoconvex domains

was discussed by Bremermann in [1, Theorems 6.8 and 6.9]. Related results

were obtained by Rossi in [11]. Most recently Pflug has used the results of

Kohn in [6] to show that S(D) contains the closure of the set of strictly

pseudoconvex boundary points of D when D is a psuedoconvex domain with

C°° boundary (see Folgerung 5 in [10]); Pflug refers to [3] for the reverse

inclusion, but this reference does not seem to be widely available. Debiard

and Gaveau have shown that S(D) is contained in the closure of the strictly

pseudoconvex boundary points when D has the form [z\ V(z) < 0} for some

C3 function V defined near D which is plurisubharmonic on D and satisfies

dV =£ 0 on dD. They follow earlier work of Malliavin [7}-[9] and E. M. Stein

[12] in applying probabilistic potential theory to study boundary behavior in

C" via suitable Kählerian metrics (see [2]).

In this note we prove that S(D) is contained in the closure of the strictly

pseudoconvex boundary points of D when D is any bounded open subset of

C" with C2 boundary. The same kind of elementary geometric considerations

which Rossi utilized in [11] can be used to obtain this sharper result. (Much

the same result is part of a recent announcement of Hakim and Sibony [4].)

We actually show that a boundary point which has a "plurisubharmonic

barrier" is a limit of strictly pseudoconvex boundary points (Corollary 1),

from which the partial characterization of S(D) follows at once.

2. Preliminaries. Let D be an open subset of C. A defining function for D

on a set Ü ç C is a real-valued function <p on ß such that D n ß = {«í> < 0}.
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If a E dD, a is a C2 boundary point of D if there is a neighborhood ñ of a

and a C2 defining function <j> for D on ñ with (d$)a ^ 0. Given such an a, we

may choose coordinates z¡ = x, + fy¡ for C" so that a = 0 and (d<f>)a =

(dxx)a, whence the tangent space to dD at a is {xx = 0}. If we make the

identification C = R X (R X C~') by z = (x„ (>»„ (z2, . . ., z„))), then the

implicit function theorem enables us to choose a 5 > 0, an open neigh-

borhood U of 0 in R X C"1, and a real-valued function i// E C2(U) with the

property that

D n[(-M) x I/] = {(•*,') e(-M) x i/|x < xp(t)}.

Since x — >//(/) is a defining function for D on ( — 5, 5) X U whose restriction

to the complex tangent space to 3F> at a is — \p(0, (z2, . . . , zn)), a will be a

strictly pseudoconvex boundary point of D precisely if ^ is strictly super-

harmonic at 0 on every complex line through 0 in U.

Suppose A' is a compact smoothly bounded subset of R", B is a closed ball,

B D K, and a EaB n oK; then of course a is a strictly convex boundary

point of K. The following proposition (proved by Rossi in [11]) is an

intuitively obvious complex analogue of this result, and provides us with a

criterion for recognizing strictly pseudoconvex boundary points.

Proposition. Let D be an open subset of C", a a C2 boundary point of D, Ü

an open neighborhood of a,v E C¿(fi), v strictly plurisubharmonic. Suppose that

v(a) = 0 and that v < 0 on D n fi. Then a is a strictly pseudoconvex boundary

point of D.

Proof. We may assume that (dv)a =£ 0; for if (dv)a = 0 then one can

replace v by v + e<¡>, where <f> is any defining function for D near a with

(d<j>)a =?*= 0 and e is a corresponding small positive number. Choose coordi-

nates for C so that a = 0 and (dv)a = (dxx)a. Then there is an open set V in C

with a E V C fi, and an open neighborhood U of 0 in RxC"1 with

functions ip, u E C¿( U), such that

D n V= {(x,t) ERX U\x < »//(')};

{v < 0} n V = {(jc, t)ERX U\x< u(t)};

{(>P(t),t)\tEU}çV.

Note that <//(0) = «(0) = 0 since a E aD n 3 ({v < 0)). Furthermore, uV < u.

[Let t E U. Then for any small positive e, (<//(/) — e, t) E D n V. Since

V CU, the hypotheses about v imply (if<(r) — e, t) E {v < 0} n V. Thus for

all small positive e, \p(t) — e < u(t), so u^(/) < «(?)•] So \p — u has a maxi-

mum at 0.

Now v is strictly plurisubharmonic and x — u(t) is a defining function for

{t> < 0} near 0, so u must be strictly superharmonic at 0 on complex lines

through 0 in U. If I parametrizes such a line, then %(0) < 0. But \p — u has a

maximum at 0, so (\p - u)^(0) < 0, whence ^(0) < 0. Thus \p is also strictly

superharmonic at 0 on complex lines through 0 in U, from which it follows
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that a is a strictly pseudoconvex boundary point of Q.

3. Existence of strictly pseudoconvex boundary points. We are now ready to

prove a fairly general result about the existence of strictly pseudoconvex

boundary points. This result has a number of direct consequences, including

the characterization of the Shilov boundary of A(D) mentioned in the

Introduction.

Theorem. Let Ux, U be bounded open subsets of R X C-1 with U Q Ux.

Let ^ E C2(UX), let e, > e > 0, and let D, V denote the following subsets of

C:

D = {(x, t) E R X Ux\\P(t) - e, < x < i//(r)};

V = {(x, t) E R X U\xp(t) - e < x < ¡b(t) + e).

Suppose there is a plurisubharmonic function u E C^(D) for which supDxyu <

supDM. Then V contains a strictly pseudoconvex boundary point of D. (Note that

dD n V = {(x, t) E R X U\x = \p(t)} contains only C2 boundary points of

D.)

Proof. We may assume that u is strictly plurisubharmonic on D, for u may

be replaced by u + 81,"=x\zj\2 if 5 is a sufficiently small positive number. Let

K = {(x, ()6RX U\x = ¿(f)}. For0 < s < e, define

Ds = (s, 0) + D = {(jc, /) E R X Ux\s + «//(f) - e, < x < s + «//(/)},

and note that each Ds is a neighborhood of K in C". Define us on Ds by

and let m(s) = max^Uj for 0 < s < e,. Notice that m is continuous on (0, £,),

that sup m = sup u, and that m(s) < supflv(, m when e < s < e,. Choose c

with supm(, « < c < sup0 m, and let

r = max{jc G(0, e)\m(s) > c\.

Then m(r) = c, and wr < c on Z), n D. Choose a E K so that «r(«) = c. It is

easily seen that a EdD n V. Observe that ur — c is strictly plurisubharmonic

on Dr, that (ur — c)(a) = 0, and that ur — c < 0 on Dr n D. By the above

proposition, a is a strictly pseudoconvex boundary point of D; since a E V,

this completes the proof of the Theorem.

Remark. The assumption that u is smooth in the Theorem and in Corollary

1 below is unnecessary. One need only approximate the given plurisub-

harmonic function by a smooth one defined on a slightly smaller domain in

the usual way (as is done, e.g., for subharmonic functions in Theorem 1.6.11

in [5]), and observe that the boundary of the smaller domain may be taken to

be a translate of the boundary of the original domain near the boundary

points of interest.

Corollary 1. Let D be an open subset of C", and let a be a C2 boundary

point of D. If there is a "plurisubharmonic barrier" for a on D, then a is a limit
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of strictly pseudoconvex boundary points of D. (By a "plurisubharmonic barrier"

we mean a function u E C¿(£>) such that lim supzeD z^au(z) = 0 but for each

neighborhood V of a in C, sup^^w < 0.)

Proof. After a suitable change of coordinates the Theorem may be applied

on a small neighborhood of a.

Corollary 2. Suppose that D is an open subset of C, that a is a C

boundary point of D, and that there is a function f E A(D) which peaks at

a (f(a) = 1 and \f\ < 1 on D \ {a}). Then a is a limit of strictly pseudoconvex

boundary points.

Proof. Apply Corollary 1 in a neighborhood of a with u = log|/|.

Corollary 3. Let D be a bounded domain in C" with C2 boundary. Then the

Shilov boundary of A(D) is a subset of the closure of the strictly pseudoconvex

boundary points of A (D).

Proof. The Shilov boundary of a uniform algebra on a compact metric

space is the closure of the set of peak points. Thus Corollary 3 follows from

Corollary 2.
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