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THE GROUP C*-ALGEBRA OF THE DESITTER GROUP

ROBERT BOYER AND ROBERT MARTIN1

Abstract. Let G denote the universal-covering of the DeSitter group and

C*(G) the group C*-algebra of G. In this paper we use the extension theory

of C. Delaroche to describe the structure of C*(G).

Introduction. Let G denote the universal-covering of the DeSitter group and

C*(G) the group C*-algebra of G, i.e., the enveloping C*-algebra of the

involutive Banach algebra LX(G) (see [2]). The main goal of this paper is to

give a complete description of the structure of C*(G). Briefly, the main result

is that C*(G) is isomorphic to the restricted product of certain C*-algebras

whose structures have concrete descriptions given by the extension theory of

C. Delaroche [1].

In §1 of this paper we summarize the classification of the irreducible

unitary representations of G given by J. Dixmier [3] and the character

formulas for these representations given by T. Hirai [6]. We refer to [3] or [9]

for all information concerning the structure of G.

In §2 we investigate the behavior of the irreducible characters and then

follow the method of J. M. G. Fell [4] to describe the topology on G. An

important step in this program is that of proving a Riemann-Lebesgue lemma

for G. This we also do in §2.

In §3 we determine the structure of C*(G). Since there are an infinite

number of points where G fails to be Hausdorff, the methods of [1] do not

apply directly. However, we are able to express C*(G) as the restricted

product of certain C*-algebras each of which is describable via Theorem

VI.3.8 of [11

When G = SL(2, C), the structure of C*(G) was first described by Fell [5]

and later by Delaroche [1]. For G = SL(2, R), the structure of C*(G) was

determined by Milicic [7] by using methods similar to those of Fell in the

SL(2, C) case. For the remaining Lorentz groups, one should be able to use

the parameterization of G given by Thieleker [10], the character formulas

given by Hirai [6], and the Delaroche extension theory to obtain results

similar to those in this paper. This problem reduces to knowing the topologi-

cal behavior at the "ends" of the complementary series representations,

Received by the editors May 17, 1976.

AMS (MOS) subject classifications (1970). Primary 22D25, 43A40; Secondary 46L25.
Key words and phrases. DeSitter group, irreducible unitary representations, characters, principal

series, complementary series, discrete series, hull-kernel topology, restricted product, C*-algebras.

'Partially supported by a grant from the National Science Foundation.

© American Mathematical Society 1977

177



178 ROBERT BOYER AND ROBERT MARTIN

proving a Riemann-Lebesgue lemma for these groups, and then expressing

C*(G) as a restricted product of C*-algebras to which Theorem VI.3.8 of [1]

is applicable.

1. The representations and characters of G. The DeSitter group is the group

G' = SOe(4, 1), i.e., the identity component of the group of all

automorphisms of R5 which preserve the quadratic form x\ + x\ + x2 + x\

— x\. G' is a connected semisimple real-rank one Lie group with trivial

center. G = Spin(4, 1) is the simply-connected double covering of G'. Using

the parameterization of G as a subset of R2 given by Dixmier [3], we have that

the members of G, other than the trivial representation /, fall into the

following 4 categories:

A. The continuous series %. The collection of continuous series represen-

tations is % = [y(n, s): s > —2 if n = 0, s > 0 if n = 1, 2, . . ., and s >

1/4 if n = 1/2, 3/2, . . . } where y(n, s) is as in [3]. 91 is the disjoint union

of the irreducible principal series representations

<3> = [y(n, s):s > 1/4 if n = 0, 1, 2, . . . and* > 1/4 if n = 1/2,... }

and the complementary series representations

6 = {y(n, s): -2 < s < 1/4 if n = 0; 0 < s < 1/4 if n = 1, 2, . . . }.

B. The reducible principal series ft. These are the irreducible repre-

sentations arising as summands of the reducible principal series repre-

sentations. So

ft- {^(n, 1/2):« = 1/2,3/2,...}.

C. The discrete series 6D. This is the collection ^ = [Tr±(n, q): n =

1,3/2,...;?-»,»- 1, ...,3/2 or 1).
D. The end point representations S. This, in Dixmier's notation, is the

collection S = {ir(n, 0): n = 1, 2, . . . }.

We shall identify G with the following subset of R2: to each representation

y(n, s) we associate the point (n, s); to the pair Tr±(n,q) G ft U ^ we

associate a double point at (n, - q); to Ti(n, 0) E S we associate the point

(n, 0) [note that these points occur as end points of the various intervals

comprising the complementary series for n = 1,2,...]; and to / we associate

the end point of the class one complementary series (n = 0), (0, - 2).

Using the realization of G as a certain collection of two by two matrices

over the quaternions given in [9], we let

m  -(eiu/2       0\     m  .Je*'2        0    \     „ _/chr/2    shi/2\

m"~\   0       e-4    m°-\   0       e-4    a'-Ut/2     chtß}

A = {a,:t GR),    B = {mu:u G?L},     and    F = (mumc: u, v G R}.

Then Ax = BA and ^42 = F are the nonconjugate Cartan subgroups of G.

The character of each tt E G is given by integration against a locally

summable function on G. We shall take the liberty of denoting both by the
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symbol e„-so for / G CC°°(G), Qr(J) = fGf(g)®w(g) dg. Setting G, =

UgeGgA¡ g x for 7" = 1, 2, we recall that Gx u G2 is almost all of G (i.e., G

up to a set of Haar measure zero) and that @„(xh¡x~x) = ©„(A,) for h¡ E A,.

We now recall the formulas for the irreducible characters of G given by Hirai

[6]. For h E Ax we let Ax(h) = 2|sh i/2|(sin w/2)(ch t - cos u) and for h E

A2 we let A2(h) = 2(sin t>/2)(sin w/2)(cos v — cos u).

A. For y(n, s) E 9 und s = 1/4 + m2,

ö(«, s)(h) =

cos(mt)sin(n + 1/2)«

B. For y(n, s) E Q and s = 1/4 - m2,

cn(mt)sin(n + l/2)w

e(«, s)(h) = A,(/7)

0

if A G Ax,

if /i G yl2.

if /i G Ax,

if h E A2.

C. Letting 0±(/j, 1/2) denote the character for ^(n, 1/2) G <3l, we have

sin(n + 1/2)m

0+(ti, l/2)(h) + @-(n, \/2)(h) = Ax(h)

0

if h E Ax,

ifhE A2.

D. Letting @±(n, (/) denote the character for •n±(n, q) G 6Ù, we have

0 + (n,(/)(7i)+ ©-(«, (/)(Ä)

exp(-(t/ - l/2)|7|)sin(77 + 1/2)« - exp(-(?7 + I/2)\t\)sin(q - l/2)u

A,(*)

if /i G Ax,

-sin(q - \/2)v sin(n + 1/2)« + sin(7j + 1/2)ü sin(q - \/2)u

A2(h)

if h E A2.

@E(n, 0)(h) =

exp(-(/7 + l/2)|i|)sin(M/2) + sin(n + 1/2)« sh(|i|/2)

Ax(h)

ifhE Au

sin(n + 1/2)« sin(u/2) - sin(w/2)sin(rt + l/2)u

if A G A2.
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2. The topology on G. With the identification of G as given in § 1 we have

that G=5lutu6DuS U{/}CR2. Roughly speaking, to describe the

topology of G, we must determine the topology on each of the pieces

91, 91, ÓD, S, and {/} and then investigate how these pieces fit together

topologically. We do this by investigating the various limits of the characters

in conjunction with a key theorem due to Fell [4, p. 391].

Lemma 1. (1) Let J0 = (-2, oo), Jn = (0, co) for n = 1,2, ..., and Jn =

(1/4, co) for n = 1/2, ... . Then if {sa) is a sequence in Jn for n =

0, 1/2, 1, . . . with sa^sE Jn, 6(7i, stt) -» 9(77, i).

(2) If n = 1/2, 3/2, . . . and [sa] is a sequence in (1/4, oo) with sa -> 1/4,

then 6(77, sa) -+ ®+(n, 1/2) + e~(n, 1/2).

(3) // {s0} is a sequence in ( — 2, oo) with sa—> —2, then 6(0, sa) -» 1 +

e*(i, o).
(4) // n = 1, 2, . . . and {sa} is a sequence in (0, oo) with sa —> 0, then

6(/i, s„) -> ®E(n, 0) + 6+(77, 1) + 6-(tj, 1).

Proofs. Direct application of the character formulas.

Lemma 2 (Riemann-Lebesgue lemma for G). If {Try} is a sequence in G

whose underlying parameters tend to oo in R2 andf E CCX(G), then 6W (/) -» 0.

Proof. First we note that it suffices to consider sequences in either

$ u 91, 6D, 6, or &. For a sequence in 9 u 91 U 6¡>, this result has been

proven by R. Lipsman (see [11]), and so we need only consider the cases 6 or

S. For a sequence {iry) in G to converge to infinity, we must have that the

underlying parameters (rty, sy) satisfy ny —> oo and \sy\ < 2. We now use the

fact that (see [11, Chapter 8] and [8]) it is possible to normalize the invariant

measure dx g on G/A, such that for/ G Ccœ(G),

[ f(g)dg = f  f     f(ghg-x)A2(h) dxgdh
JGt JAlJG/Ai

where dg is Haar measure on G and dh is Haar measure on Ax (= Sx x

R+)-(°ur Ax(h) differs by a constant from that of [8] which we have chosen to

place in the measure dxg). If we write Ffx(h) = àx(h)fG/Aif(ghg~x) dxg for

/ G CC!X'(G), then Ffx has compact support on A, and

©K- W) = í   Í      f(ghg-x)@(ny, sy)(ghg-x)A2(h) dxgdh
JAXJG/AX

= í   F¡ (h)cn(myt)ûn(ny + 1/2)« dh.

Since the wr's are bounded, the desired result now follows from a simple

uniformity argument together with the Riemann-Lebesgue lemma for the

locally compact abelian group Ax.

Now let {Tr(ny, 0)} be a sequence in S with ny -> oo. Normalize the

invariant measure d2g on G/A2 such that for/ G CCX(G),
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[ f(8)dg = [  (      f(ghg-x)A\(h)d2gdh
JG2 JA2JG/A2

where dh is Haar measure on ^42 (= Sx X Sx) (again our A2 is a constant

times that appearing in [8]). For/ E CX(G) we have that

/>'(A»)-AA)/     f{ghig-x)dtg
JG/Al

has compact support on A¡. Then

®E(ny, 0)(/) - 2  f f     f(ghig-x)&E(nr 0)A2(hi) d,g dh,
, = 1 JAiJG/Ai

= î[F>(hi)QE(nrO)(hi)Ai(hi)dhi
1   JA,

= [ Fx (hx)(exp(-(ny + l/2)|r|)sin(ii/2) + sin(ny + 1/2)« sh|//2|) dhx

+ f Ff2 (h2)(sin(ny + 1/2)k sin(o/2) - sin(«/2)sin(«y + \/2)v) dh2.
ja2

Using   three   Riemann-Lebesgue   lemma   arguments   and   one   Lebesgue

dominated   convergence   theorem   argument,   we   may   conclude   that

®E(ny,0)(f)^>Oasny^oo.

The above lemmas, [4, p. 391], and the fact that points are closed (G is

CCR) completely determine the topology on G. Part (1) of Lemma 1 implies

that the topology on 91 is identical to that it inherits as a subset of R2 (and

hence is T2). Lemma 2 implies that all limits of sequences in G occur in the

finite plane. This, together with the fact that points are closed, implies that

i U 'i U S U {/} is closed in G. Parts (2), (3), and (4) of Lemma 1 tell us

how the pieces fit together. They do so in the following way: (1) the closure of

any subset of 91 that would ordinarily contain the point (0, - 2) must

contain both (0, - 2) and (1, 0); (2) the closure of any subset of 91 that

would ordinarily contain (n, 1/4) for n = 1/2, .. . must contain the pair of

points at (n, - 1/2); and (3) the closure of any subset of 91 that would

ordinarily contain (n, 0) for n '= 1,2,... must contain the pair of points at

(n, — 1) in addition to the point (n, 0). We also note:

(1) on each of the pieces 91, ft, 6D, $, (/} the topology coincides with the

natural topology of the underlying parameter space-so on each separate piece

the topology is F2;

(2) the pieces fit together in a non-F2 manner (recall that G is F,);

(3) <3> u ft is closed in G while 9> and 91 are not;

(4) Gr = 9 U ft U ^ is closed in G but is not F2;

(5) the collection {w±(n, q): q > 3/2} is both open and closed in G;

(6) any subset offtu'î'uSui/jis closed in G;

(7) öD is not open in G but is open (and .closed) in G,; and

(8) the only point in G which fails to be separated from the trivial

representation is tt(\, 0).
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In summary we have

Theorem 1. Let P0 = (0, - 2), P„ = (n, 0) for n = 1,2, ..., Pn = (n,J/4)

for n = 1/2, ...,Q={P0, Px/2, Px, . . . ), and S E G. Denote by S the

(hull-kernel) closure of S in G and by S0 the closure of S as a subset of R2.

Then

(i) if PEG- ({Px) u {>*(», 1/2): 77 = 1/2, 1, ...}), P E S iff P G S0;
(ii) ifP = TT+(n, 1/2), P ESiffP ES0orPnE S0;

(iii) ifP = Px, P G S iffP E S0 or P0 E SQ.

3. The structure of C*(G). We now use the concept of a restricted product

together with the extension theory of C* -algebras given in [1] to determine

the isomorphism type of the group C*-algebra D of Spin(4, 1). We shall

denote the representations in9Luêu(/}by their underlying parameters.

We let H be a separable infinite-dimensional Hilbert space and %(H) the

compact operators on H.lf S E R2, let (5), be the compactification obtained

by forming the one-point compactification of the closure of S in R2 with

point at infinity xx.

The dual space of D naturally decomposes into countably many

components of three distinct types:

(1) Z0 = {(0, s): s > -2} u {(1, s): s > 0} u {w*(l, 1)};

(2) Z,  = {(7, s):   s > 1/4} U {»*(/, 1/2)} U {**(/, q):   q = i, i -

1, . . . , 3/2}, where i E Mx - {1/2, 3/2, . . . };
(3) Zj = {(j, s): s > 0} u {rr±(j, q): q =j,j - 1,..., 1}, where/ G M2

= {2, 3, . . . }.

Let Ik be the closed two-sided ideal of D with Ik = Zk, where k G M = Mx

U M2. First we describe the C*-structure of these ideals, then explain how D

is determined. We shall only indicate what to define in order to apply the

theorems of [1, Chapitre VI].

The description of I0: Let X = Z0 - [{P0} u {P,} U {»*(1, 1)}], and Y =

Z0 - X. The ideal A of D with i = X is isomorphic to C°(X, %(H)), the

norm-continuous functions of X to 9C(//) vanishing at infinity, by [2, p. 219]

since A has continuous trace by Lemma 1. If C = ®4=X%(H) © C, then I0 is

an extension of A by C. Let /: (X)x - X -» ^(T) by /(xj = 0,/(Po) =

W U {Pj},/(Pi) = {Pi} U {w*(l, 1)}. Then I0 is the extension of X by y

associated with/. We apply the generalization [1, VI. 3.9] of Theorem VI. 3.8

of [1] where ß1 = {P0}, ß2 = {/>,}, n = 2, qx = 2, q2 = 3, sx = s2 = 1.

Moreover k[(j) = 1 for 1 < / < q¡, i = 1, 2, by parts (2) and (3) of Lemma

1. Identify H with ®4=XH © C. Then I0 is isomorphic to the C*-algebra of

pairs (m, cx © c2 © c3 © c4 © n) G C6^, 9C(/f)) x C (where

Cb(X, %(H)) denotes the bounded norm-continuous functions of X to

%(H)) such that ]im,^,Pm(t) = c,©0©0©0©t/, lim,^m(t) = 0 © c,

© c2 © c3 © 0, and lim,^m(0 = 0.

The   description   of  Ik, k E M:   Let   X¡ = Z,  - {vt±(7, 1/2)}, T; -

{w*(i, 1/2)},   / G M,;   A-, = Zj - [{«*(], 1)} U {Pj)l Yj = {77*0", 1)}^U
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[Pj),j E AF2. The ideal Ak, k E M, of D with Ak = Xk is isomorphic to

C°(Xk, %(H)) since Ak has continuous trace by Lemma 1. Let N(k) = 2 if

kG Mx and N(k) = 3 if k E M2. If C = ©*_<*>9C(//), then 4 is an

extension of Ak by C. Let /: (Xk\ - Xk -» f(if) by /(.J = 0,/(F*) =
yt, /c E M. Then 4 = 2* is the extension of Xk by Yk associated with/. We

apply [1, VI. 3.8] where 0X = {Pk}, n = 1, qx = N(k), sx = 1. Moreover k\(r)

= 1 for 1 < r < N(k) by parts (2) and (4) of Lemma 1. Identify H with

0^^//. Then Ik is isomorphic to the C*-algebra of pairs (m, c) E

Cb(Xk, %(H)) X C such that hmt^pm(t) = cx® c2if k G Mx, hn\t^Pm(t)

= c, © c2 © c3 if /c E M2, and lim(^,00w(i) = 0.

We next show that D is the restricted product [2, 1.9.4] of the ideals

Ik, k G M u {0}.

Lemma 3. Let a be a C*-algebra without identity. If à = U "_ 1Arn, where the

X„ are disjoint nonempty open subsets of à, then a is isomorphic to the restricted

product B of the ideals I„ where In = X„.

Proof. Consider the ideal c of a, where c = U "_r ©*_,/„• It is easy to see

that for any tt G ä, 77(c) ¥= 0. Thus, c = 0 by [2, 3.2.2]. We now map c onto

the restricted product B in the obvious way.

The following theorem now follows immediately.

Theorem 2. // G is the universal covering of the DeSitter group, then C*(G)

is isomorphic to the restricted product of the ideals Ik, k G M tj (0).

Theorem 2 determines the isomorphism type of C*(G). It is, of course,

possible to obtain alternate descriptions for the structure of C*(G); for

example, it follows from [2, 10.10.2] that C*(G) is isomorphic to /0 © Ix/2 ©

C°(Z+, /) where J = I3j2 © 12. One may also obtain descriptions similar to

those in [5] and [7].

One can easily show that if G' is the DeSitter group, then G' = Z0 u

UJ£MZj with the relative topology it inherits as a subset of G. Thus we have

Theorem 2'. Let G' be the DeSitter group SOe(4, 1). Then C*(G') is

isomorphic to the restricted product of the ideals Ik, k G M2 u {0}.
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