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THE GROUP C*-ALGEBRA OF THE DESITTER GROUP
ROBERT BOYER AND ROBERT MARTIN!

ABSTRACT. Let G denote the universal-covering of the DeSitter group and
C*(G) the group C*-algebra of G. In this paper we use the extension theory
of C. Delaroche to describe the structure of C*(G).

Introduction. Let G denote the universal-covering of the DeSitter group and
C*(G) the group C*-algebra of G, i.e., the enveloping C*-algebra of the
involutive Banach algebra L,(G) (see [2]). The main goal of this paper is to
give a complete description of the structure of C*(G). Briefly, the main result
is that C*(G) is isomorphic to the restricted product of certain C*-algebras
whose structures have concrete descriptions given by the extension theory of
C. Delaroche [1].

In §1 of this paper we summarize the classification of the irreducible
unitary representations of G given by J. Dixmier [3] and the character
formulas for these representations given by T. Hirai [6]. We refer to [3] or [9]
for all information concerning the structure of G.

In §2 we investigate the behavior of the irreducible characters and then
follow the method of J. M. G. Fell [4] to describe the topology on G. An
important step in this program is that of proving a Riemann-Lebesgue lemma
for G. This we also do in §2.

In §3 we determine the structure of C*(G). Since there are an infinite
number of points where G fails to be Hausdorff, the methods of [1] do not
apply directly. However, we are able to express C*(G) as the restricted
product of certain C*-algebras each of which is describable via Theorem
VI1.3.8 of [1].

When G = SL(2, C), the structure of C*(G) was first described by Fell [5]
and later by Delaroche [1]. For G = SL(2, R), the structure of C*(G) was
determined by Mili¢i¢ [7] by using methods similar to those of Fell in the
SL(2, C) case. For the remaining Lorentz groups, one should be able to use
the parameterization of G given by Thieleker [10], the character formulas
given by Hirai [6], and the Delaroche extension theory to obtain results
similar to those in this paper. This problem reduces to knowing the topologi-
cal behavior at the “ends” of the complementary series representations,
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proving a Riemann-Lebesgue lemma for these groups, and then expressing
C*(G) as a restricted product of C*-algebras to which Theorem VI.3.8 of [1]
is applicable.

1. The representations and characters of G. The DeSitter group is the group
G’ = §0O,(4, 1), ie., the identity component of the group of all
automorphisms of R® which preserve the quadratic form x? + x2 + x2 + x}
— x2. G’ is a connected semisimple real-rank one Lie group with trivial
center. G = Spin(4, 1) is the simply-connected double covering of G’. Using
the parameterization of G as a subset of R? given by Dixmier [3], we have that
the members of G, other than the trivial representation /, fall into the
following 4 categories:

A. The continuous series 9U. The collection of continuous series represen-
tations is 9N = {y(n,s): s> -2ifn=0,s>0if n=1,2,..., and s >
1/4if n=1/2,3/2,...} where y(n, s) is as in [3]. 9 is the disjoint union
of the irreducible principal series representations

P ={y(ns):s>1/4ifn=0,1,2,... ands > 1/4ifn=1/2,...}
and the complementary series representations

C={y(ns):-2<s<1/4ifn=0,0<s<1/4ifn=12,...}.

B. The reducible principal series R. These are the irreducible repre-
sentations arising as summands of the reducible principal series repre-
sentations. So

R o= {n*(n,1/2:n=1/2,3/2,...}.

C. The discrete series ). This is the collection % = {7#*(n, q): n=
,3/2,...;9g=nn-1,...,3/20r1}.

D. The end point representations & . This, in Dixmier’s notation, is the
collection & = {7(n,0):n=1,2,...}.

We shall identify G with the following subset of R?: to each representation
v(n, s) we associate the point (n,s); to the pair 7=(n,g) € R U D we
associate a double point at (n, — g); to w(n, 0) € & we associate the point
(n, 0) [note that these points occur as end points of the various intervals
comprising the complementary series for n = 1, 2, . . . ]; and to I we associate
the end point of the class one complementary series (n = 0), (0, — 2).

Using the realization of G as a certain collection of two by two matrices
over the quaternions given in [9], we let

. /2 m = (eiv/Z 0 ) o= (ch t/2 sht/2
u 0 em2) ° 0 e®2) 7 \sht/2 cht/2)
A={a:teR}, B={m_:u€R}, and T={mm,;uv€ER}

Then 4, = BA and A, = T are the nonconjugate Cartan subgroups of G.
The character of each # € G is given by integration against a locally
summable function on G. We shall take the liberty of denoting both by the
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symbol ©,-s0 for f € C(G), ©,(f) = [ f(8)8,(8)dg. Setting G, =
U,gecgd; g~ for i = 1,2, we recall that G, U G, is almost all of G (i.e., G
up to a set of Haar measure zero) and that ©,(xh,x~") = ©,(h,) for h; € 4,.
We now recall the formulas for the irreducible characters of G given by Hirai
[6). For h € A, we let A\(h) = 2|sh t/2|(sin u/2)(ch ¢t — cos u) and for h €
A, we let A,(h) = 2(sin v/2)(sin u/2)(cos v — cos u).

A.Fory(n,s) € ® ands = 1/4 + m?,

[ cos(mt)sin(n + 1/2)u
(mt)sin( /2) fhea,
O(n, s)(h) = Ay(h)
0 ifh € 4,
B. For y(n,s) € C and s = 1/4 — m?,
[ ch(mt)sin(n + 1/2
(mi)sin(n /Du ifheE A,
8(n, s)(h) = ; B,(h)
0 if h € A4,

C. Letting ©*(n, 1/2) denote the character for #*(n, 1/2) € K, we have

sin(n + 1/2)u
8% (n, 1/2)(h) + 87 (n, 1/2)(h) = 4y(h)
0 if h € 4,.

ifhed,

D. Letting ®*(n, q) denote the character for 7 *(n, g) € D, we have
0% (n, q)(h) + ©7(n, q)(h)

( exp(—(g — l/2)|t|)sin(n + 1/2)u — exp(—(n + 1/2)|t|)sin(q — 1/2)u
A,(h)
_ ifhe A,
- —sin(g — 1/2)v sin(n + 1/2)u + sin(n + 1/2)v sin(qg — 1/2)u
By(h)
ifh €4,
E.
[ exp(—(n + 1/2)|¢|)sin(u/2) + sin(n + 1/2)u sh(jt|/2)
A(h)
O%(n, 0)(h) = ifhe 4,
’ sin(n + 1/2)u sin(v/2) — sin(u/2)sin(n + 1/2)v
By(h)

if h € A,
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2. The topology on G. With the identification of G as given in §1 we have
that G =9 U R U D U & U {I} C R% Roughly speaking, to describe the
topology of G, we must determine the topology on each of the pieces
N, R, D, &, and {I} and then investigate how these pieces fit together
topologically. We do this by investigating the various limits of the characters
in conjunction with a key theorem due to Fell [4, p. 391].

Lemma 1. (1) Let Jy=(—2, ©),J,=(0, ) forn=1,2,..., and J, =
(1/4, ) for n= 1/2,.... Then if {s,} is a sequence in J, for n=
0,1/2,1,... withs,—> s € J,, O(n, s,) > O(n, s).

@ Ifn=1/2,3/2,... and {s,} is a sequence in (1/4, ) with s, — 1/4,
then ©(n, s,) > 0*(n, 1/2) + 0~ (n, 1/2).

(3) If {s,} is a sequence in (—2, o) with s,— —2, then ©(0,s,) > 1 +
e£(1, 0).

@ Ifn=12,... and {s,} is a sequence in (0, c0) with s, — 0, then
O(n, s,) > OF(n,0) + ©*(n, 1) + O (n, 1).

ProoFs. Direct application of the character formulas.

LEMMA 2 (RIEMANN-LEBESGUE LEMMA FOR G). If {m.} is a sequence in G
whose underlying parameters tend to o in R? and f € C*(G), then 6),,1( H-0.

Proor. First we note that it suffices to consider sequences in either
P UR,D,C, or &. For a sequence in P U R U 9D, this result has been
proven by R. Lipsman (see [11]), and so we need only consider the cases C or
&. For a sequence {7,} in C to converge to infinity, we must have that the
underlying parameters (n,, s,) satisfy n, — oo and [s,| < 2. We now use the
fact that (see [11, Chapter 8] and [8]) it is possible to normalize the invariant
measure d, g on G/ A, such that for f € C2(G),

fG S(g) dg = fA | fG o J(8he™8i(h) d,3 dh

where dg is Haar measure on G and dh is Haar measure on 4, (= S' X
R™*)—~(our A,(h) differs by a constant from that of [8] which we have chosen to
place in the measure d, g). If we write Ff‘(h) =A(M)fg/a,S( ghg~ 1 d, g for
f € C2(G), then Ffl has compact support on 4, and

a(n,, 5,)(f) = L fG » f(ghg=")®(n,, s,)(ghg ~")AX(h) d, g dh

= L F} (h)ch(m, t)sin(n, + 1/2)u dh.

Since the m,’s are bounded, the desired result now follows from a simple
uniformity argument together with the Riemann-Lebesgue lemma for the
locally compact abelian group 4,.

Now let {m(n,0)} be a sequence in & with n — co. Normalize the
invariant measure d, g on G/ 4, such that for f € C*(G),
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fG S(g) dg = fA 2 fG S (8hs™Ak) dyg di

where dh is Haar measure on 4, (= S' X S') (again our A, is a constant
times that appearing in [8]). For f € C,*(G) we have that

Ff (h) = Ai(hi)L/A f(ghg™") dg

has compact support on 4;. Then

£ 2 ~1Y@E(n,, 0)A2(h)) dig dh
@ (ny’ 0)(f) = igl Li'[G/Aif(ghig )® (ny’ O) i( i) i8 i
2
= ; fA lF} (h)O5(n,, O)(h)A(h;) db,
= [ E' (m)(exp(—(n, + 1/2)[f])sin(u/2) + sin(n, + 1/2)u shj¢/2]) dh,

+f F? (hy)(sin(n, + 1/2)u sin(v/2) — sin(u/2)sin(n, + 1/2)v) dh,.
A,

Using three Riemann-Lebesgue lemma arguments and one Lebesgue
dominated convergence theorem argument, we may conclude that
0% (n,, 0)(f) > 0as n, — .

The above lemmas, [4, p. 391], and the fact that points are closed (G is
CCR) completely determine the topology on G. Part (1) of Lemma 1 implies
that the topology on 9 is identical to that it inherits as a subset of R? (and
hence is T,). Lemma 2 implies that all limits of sequences in G occur in the
finite plane. This, together with the fact that points are closed, implies that
R UDUE U (I} isclosed in G. Parts (2), (3), and (4) of Lemma 1 tell us
how the pieces fit together. They do so in the following way: (1) the closure of
any subset of 9 that would ordinarily contain the point (0, — 2) must
contain both (0, — 2) and (1, 0); (2) the closure of any subset of 9U that

would ordinarily contain (n, 1/4) for n = 1/2, ... must contain the pair of
points at (n, — 1/2); and (3) the closure of any subset of 9 that would
ordinarily contain (n, 0) for n = 1, 2, ... must contain the pair of points at

(n, — 1) in addition to the point (n, 0). We also note:

(1) on each of the pieces N, R, D, &, {I} the topology coincides with the
natural topology of the underlying parameter space—so on each separate piece
the topology is 7,;

(2) the pieces fit together in a non-T, manner (recall that G is T));

(3) 9P U A is closed in G while 9 and 9 are not;

@G, =9 UR U D isclosed in G but is not T;

(5) the collection {7 *(n, q): ¢ > 3/2} is both open and closed in G;

(6) any subsetof R U D U & U {[I} is closed in G;

(7) D is not open in G but is open (and closed) in é,; and

(8) the only point in G which fails to be separated from the trivial
representation is (1, 0).



182 ROBERT BOYER AND ROBERT MARTIN

In summary we have

THEOREM 1. Let Py= (0, — 2), P, = (n,0) forn=1,2,..., P, = (n, 1/4)
Jor n=1/2,...,0={Py Py, P,...}, and S C G. Denote by S the
(hull-kernel) closure of S in G and by S, the closure of S as a subset of R
Then

()if PEG—({PYu{nr*(n,1/2:n=1/2,1,...}),P € Siff P € S,;

@) if P=7*(n, 1/2), P € Siff P € Syor P, € Sy;

(iii)if P= P, P €E Siff P € Syor P, € S,.

3. The structure of C*(G). We now use the concept of a restricted product
together with the extension theory of C*-algebras given in [1] to determine
the isomorphism type of the group C*-algebra D of Spin(4, 1). We shall
denote the representations in 9 U & U {I} by their underlying parameters.
We let H be a separable infinite-dimensional Hilbert space and K (H) the
compact operators on H. If S C R? let (S), be the compactification obtained
by forming the one-point compactification of the closure of S in R? with
point at infinity x .

The dual space of D naturally decomposes into countably many
components of three distinct types:

D Zy={©,5):s>-2}u {(1,5):s >0} U {7=(1, D};

(2) Z, = {(i,s): s> 1/4} U {7*(, 1/2)} U {7*@(, q: q=1i1i-

,3/2), wherei € M, = {1/2,3/2,.

(3)Z {((J,$): s20U {7*(,9): g = _]_] 1,..., 1}, where j € M,

={2.3,...).

Let I, be the closed two-sided ideal of D with I, = Z,, where k € M = M,
U M,. First we describe the C*-structure of these ideals, then explain how D
is determined. We shall only indicate what to define in order to apply the
theorems of [1, Chapitre VI].

The description of Iy: Let X = Zy — [{Po} U {P,} U {7*(1, 1)}}, and ¥ =
Z, — X. The ideal 4 of D with A=Xis isomorphic to CoX, K(H)), the
norm-continuous functions of X to H(H) vanishing at infinity, by [2, p. 219]
since 4 has continuous trace by Lemma 1. If C = @%_,H(H) & C, then I, is
an extension of 4 by C. Let f: (X), — X - %(Y) by f(x,) = D, f(P,) =
{Po} U {P,}, f(P)) = {P,} U {w=(1, 1)}. Then I, is the extension of X by Y
associated with f. We apply the generalization [1, VI. 3.9] of Theorem VI. 3.8
of [I] where Q' = (P}, 2 ={(P},n=2,¢,=2,¢,=3,5,=35,=1.
Moreover k{(j) = 1for 1 < j < g, i = 1,2, by parts (2) and (3) of Lemma
1. Identify H with @7.,H @ C. Then I, is isomorphic to the C*-algebra of
pairs (m,c¢;, ® ¢, ® ¢c; ® ¢, ® n) € CO(X, H(H)) X C (where
C®(X, K (H)) denotes the bounded norm-continuous functions of X to
H(H)) such that lim _,m()=¢c, 000D 0D 7, lim,_,m(t) =0,
@Dc,;®c; ®0, and lim,_, m(s) = 0.

The description of I,k € M: Let X, = Z, — {n*(i, 1/2)}, Y, =
(7%, 1/2)), i€ My; X, = Z, - [{z*(, D} U (P)), ¥, = (z*(j, D}.U
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{P)),j € M,. The ideal 4,,k € M, of D with 4, = X, is isomorphic to
C ‘{(Xk, J(H)) since A4, has continuous trace by Lemma 1. Let N (k) = 2 if
k€M, and N(k)=3 if k€ M, If C= BYDH(H), then I, is an
extension of 4, by C. Let f: (X;), — X; > 9(Y,) by f(x,) = D, f(P) =
Y., k € M. Then I, = Z, is the extension of X « by Y, associated with f. We
apply [1, VI. 3.8] where @' = {P,},n = 1, q, = N(k), s, = 1. Moreover k!(r)
=1 for 1 < r < N(k) by parts (2) and (4) of Lemma 1. Identify H with
@Y®H. Then I, is isomorphic to the C*-algebra of pairs (m,c) €
C*(X,, K(H)) X C such that lim,_, m(1) = ¢, ® c, if k € M,, lim,_, , m(t)
=00 c;® cyif kK € M,, and lim,_, m(z) = 0.

We next show that D is the restricted product [2, 1.9.4] of the ideals
I, ke My {0}

LEMMA 3. Let a be a C*-algebra without identity. If G = U 2., X,,, where the
X, are disjoint nonempty open subsets of &, then a is isomorphic to the restricted
product B of the ideals I, where I, = X,,.

Proor. Consider the ideal ¢ of a, where ¢ = U 2., @’;_lln. It is easy to see
that for any = € 4, #(c) # 0. Thus, ¢ = a by [2, 3.2.2). We now map ¢ onto
the restricted product B in the obvious way.

The following theorem now follows immediately.

THEOREM 2. If G is the universal covering of the DeSitter group, then C*(G)
is isomorphic to the restricted product of the ideals I, k € M U {0}.

Theorem 2 determines the isomorphism type of C*(G). It is, of course,
possible to obtain alternate descriptions for the structure of C*(G); for
example, it follows from [2, 10.10.2] that C*(G) is isomorphic to I, ® I, 2 ®
C%zZ*,J) where J = I,,, ® I,. One may also obtain descriptions similar to
those in [5] and [7].

One can easily show that if G’ is the DeSitter group, then G’ = ZyU
U ;e m,Z; with the relative topology it inherits as a subset of G. Thus we have

THEOREM 2'. Let G’ be the DeSitter group SO,(4,1). Then C*(G’) is
isomorphic to the restricted product of the ideals I, k € M, U {0}.

REFERENCES

1. C. Delaroche, Extensions des C*-algebres, Bull. Soc. Math. France, Memoire 29 (1972).

2. J. Dixmier, Les C*-algebres et leurs representations, 2nd ed., Gauthier-Villars, Paris, 1969.
MR 39 #7442,

3. ____, Representations integrables du groupe de DeSitter, Bull. Soc. Math. France 89
(1961), 9-41. MR 25 #4031.

4. J. M. G. Fell, The dual spaces of C*-algebras, Trans. Amer. Math. Soc. 94 (1960), 365-403.
MR 26 #4201.

5. ______, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280. MR 29
#1547,

6. T. Hirai, The characters of irreducible representations of the Lorentz group of n-th order,
Proc. Japan Acad. 41 (1965), 526-531. MR 33 #4185.



184 ROBERT BOYER AND ROBERT MARTIN

7. D. Milicic, Topological representation of the group C*-algebra of SL(2, R), Glasnik Mat. Ser.
III 6 (26) (1971), 231-246. MR 46 #7909.
8. K. Okamoto, On the Plancherel formulas for some types of simple Lie groups, Osaka J. Math.
2 (1965), 247-282. MR 36 #2747.
9. R. Takahashi, Sur les representations unitaires des groupes de Lorentz généralisés, Bull. Soc.
Math. France 91 (1963), 289-433. MR 31 #3544,
10. E. A. Thieleker, The unitary representations of the generalized Lorentz groups, Trans. Amer.
Math. Soc. 199 (1974), 327-367.
11. G. Warner, Harmonic analysis on semisimple Lie groups, Vols. 1, 11, Springer-Verlag, Berlin
and New York, 1972

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA
19174 (Current address of Robert Boyer)

Current address (Robert Martin): Department of Mathematics, Middlebury College, Mid-
dlebury, Vermont 50753



