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DECOMPOSITION OF CUT LOCI

RICHARD L. BISHOP1

Abstract. If p is a point in a complete riemannian manifold, the points of

the cut locus of p are designated as singular or ordinary according to

whether there is just one or more minimizing geodesies from p. It is proved

that the ordinary cut-points are dense in the cut locus.

1 Introduction. Throughout this paper we will consider a complete

riemannian manifold M of dimension d. For m E M, a cut-point of m is a point/»

such that every extension of a distance-minimizing segment from m to p

beyond p is no longer minimizing. In the tangent space Mm, a vector x E Mm

is a tangent cut-point if the ray t -» tx, 0 < / < 1, is mapped by expm to a

minimizing segment from m to a cut-point expmx. If there are two or more

minimizing segments from' m to p, we define p to be an ordinary cut-point. If

there is just one minimizing segment, we call p a singular cut-point. Ordinary

and singular tangent cut-points are defined so that they correspond to the

same kind of points in M under expm.

Main Theorem. The ordinary cut-points of m are dense in the cut-locus of m

and the ordinary tangent cut-points are dense in the tangent cut-locus.

The proof of this theorem will be completed in §4. We were led to the

formulation of it in an inquiry about the smoothness properties of distance

functions, and we comment on this in §2. Our proof of the main theorem

involves a similar theorem about the conjugate locus due to F. W. Warner [3].

The results of Warner are quoted in §3 along with some of his argument, so

that we may indicate what modifications are necessary to see that they

remain true for the first conjugate locus.

There is a well-known characterization of cut-points which makes it clear

that both relations "is an ordinary cut-point of" and "is a singular cut-point

of" are symmetric. Namely, p is a cut-point of m if and only if either there are

two or more minimizing segments from m top or there is just one minimizing

segment along which/) is a conjugate point of m [1, p 237]. In particular, a

singular cut-point is always a conjugate point. This is one reason why

Warner's result are pertinent, but we also need Warner's analysis to handle
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the case where ordinary cut-points happen to be conjugate.

2. Smoothness of distance functions. Let r: M -> R be the distance from m.

In a neighborhood of m, r is smooth except at m and its gradient is a unit

vector pointing away from m along the minimizing segments from m.

Proposition, r is not C ' at the ordinary cut-points of m.

Proof. At an ordinary cut-point there are two contrary values for grad r,

specifically, the limit of grad r as we approach p along two different minimiz-

ing geodesies.

The smoothness properties of r at a singular cut-point can be more

complicated. We can make calculations, as indicated later in this paragraph,

on surfaces, which show that r can be Cx but not C2. It seems likely that this

is the behavior whenever the singular cut-point is the tip of a semi-cubical

curve included in the first conjugate locus on a surface, but the methods of

calculation used make this clear only in the case where the metric is flat in a

neighborhood of the cusp. Starting with the equation y3 = x2 for the cusp, the

orthogonal trajectories of its tangent lines can be calculated by the usual

method from elementary differential equations. The result is that the orthogo-

nal trajectory through the origin has the form y = cx4/3 + ..., c ¥* 0. We

claim that the orthogonal trajectories can be made to be the level curves of a

distance-function r on a compact surface. We first blend together the field of

tangent lines to the cusp with a field of geodesies radiating from a point m, by

the method of Gluck and Singer [2]. The geodesic arc from n to the tip is

minimizing in some neighborhood of the arc, and we can map this neighbor-

hood diffeomorphically into a compact surface. The induced metric on the

image can be extended to the whole surface, and by a conformai magni-

fication on an annulus surrounding the segment we can insure that the

segment will remain minimizing.

We conjecture that for every metric on a surface M and m E M there is a

nearby metric such that the exponential map at m of the nearby metric is a

Whitney-excellent map; that is, the conjugate locus consists only of folds and

semi-cubical cusps. It is difficult to see how this could fail to be true since it is

known that the excellent maps form a residual set in the space of all maps,

and the above example shows that there is no obstruction to an exponential

map possessing the generic behavior.

In light of these remarks and the main theorem, the best that we can claim

is that the closure of the set of nonsmooth points of r equals the cut-locus of

m along with m itself.

3. Warner's theorems on the conjugate locus. Warner's theorems concern the

tangent conjugate locus. A regular conjugate point of m is a vector x E Mm

such that d expm is singular at x and there is a neighborhood U of x for

which the intersection of every ray (from the origin) with U has just one

conjugate point on it. The other conjugate points in Mm are said to be
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singular. It is clear from the definition that the regular conjugate points form

an open subset of all the conjugate points. Let Cr denote this open subset.

Theorem A [3]. The regular conjugate points form an imbedded smooth

(d — I)-dimensional submanifold of Mm which is an open dense subset of the

conjugate locus.

We reproduce a part of the proof so that we can see that the same theorem

is true if we replace "conjugate" by "first conjugate" throughout. Aside from

the question of density this extension is obvious.

Let x be a singular first conjugate point. Designate the nullity of d expm at

y E Mm by p(y). For a singular conjugate point s it is clear that p(x) > 1,

because when p(y) = 1 the neighboring rays to the one through y can have

only one conjugate point of index 1 in some neighborhood of y. In any

neighborhood U of x there is a ray intersecting U on which there are two or

more conjugate points. The nearest to 0, say x', is a first conjugate point. Also

p(x') < p(x), because the sum of indices on a ray is a local constant.

Repeating this if necessary, we obtain a first conjugate point in U which is

regular.

Theorem B [3]. At a regular conjugate point x for which p(x) > 1, there is a

Cr-neighborhood of x on which p is constant. Moreover, the nullspace N(x) of

d expm at x is tangent to Cr, the subbundle N of TCr formed by these nullspaces

is involutive, and the leaves of N are mapped to constants under expm.

Theorem C[3]. (a) At points of Cr for which N is tangent to Cr in some

Cr-neighborhood U, the exponential map has the following canonical form, where

the x¡ are coordinates, on Mm and they¡ are coordinates on M:

y¡ ° expm = x¡   for i = 1, . . . , d - p,

y, ° expm - xxx¡   for i = d - p + 1, . . . , d.

(b) At points of Cr for which N is transverse to Cr, the exponential map has

the canonical form of a fold:

y¡ ° expm = x¡   for i = 1, . . . , d - 1,

yd ° expm = x2.

(c) The points of Cr which are neither of type (a) nor (b) are nowhere dense in

Remarks. Warner proves these theorems in a generality which includes

Finsler spaces. An immediate corollary is that expm is not injective in a

neighborhood of a conjugate point.

4. Proof of the main theorem. It suffices to prove the tangent cut-point

version since a dense subset will be mapped to a dense subset by the

continuous map expm.

The distance to the tangent cut-point is a continuous function of the ray on

which it occurs [1, p. 239], and the conjugate locus is closed. It follows that a
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nonconjugate ordinary tangent cut-point has a neighborhood in the tangent

cut-locus consisting of the same kind of points. Thus, for the remainder of the

proof we may concern ourselves with tangent cut-points which are also first

conjugate points.

Suppose that x E Mm is a cut-point which is a conjugate point of type (a)

in Theorem C. Then the leaf of N in Cr through x is mapped to the same

point in M. The nullspaces of expm are always orthogonal to the rays from 0

so that the rays to the leaf through x all map to minimizing segments. Thus,

every cut-point of type (a) is an ordinary cut-point.

Suppose that x E Mm is a cut-point which is a conjugate point of type (b)

in Theorem C. Then by the coordinate form for expm in a neighborhood U of

x, the image of U is a half-ball yd > 0, with conjugate points on the

boundary. Let p = expmx, and let (p¡) be a sequence converging to p and

lying in the half-planeyd < 0. We can take the/), to be so close top that every

minimizing segment from m to a p¡ cannot have its initial tangent falling in a

fixed open cone about the ray to x. There will be a convergent subsequence

of such minimizing segments, whose limit must be a different minimizing

segment top than the one generated by x. Thus, every cut-point of type (b) is

also an ordinary cut-point.

Finally, suppose that x E Mm is a cut-point which is a conjugate point, but

not of types (a) or (b). By Theorems A and C, the first conjugate points of

types (a) and (b) form a dense subset of the first conjugate locus. Hence, x is

a limit of a sequence (x¡), each of which is a first conjugate point of type (a)

or (b). Lety, be the cut-point on the ray t —* tx¡, 0 < í < 1. If y, = x¡, then we

have seen that y, is an ordinary cut-point. Also if y, ^ x¡, then y, is not a

conjugate point and hence is an ordinary cut-point. The sequence of rays of

(Xj) converges to the ray of x, so that (||y,||) converges to \\x\\ and (y,)

converges to x. This proves that the ordinary cut-points are dense in the

cut-locus.

Remark. We have not been able to prove that the ordinary cut-locus is

open in the cut-locus, either in Mm or in M. It is clear that the nonconjugate

tangent cut-points and the conjugate cut-points of type (a) or (b) are interior

points of the ordinary tangent cut-locus.
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