
PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 65, Number 1, July 1977

ISOTONE FUNCTIONS ON PARTIALLY ORDERED LINEAR

ALGEBRAS WITH A MULTIPLICATIVE DIAGONAL MAP

TAEN-YU DAI AND RALPH DeMARR1

Abstract. The diagonal of the product of two triangular matrices is the

product of the diagonals of each matrix. This idea is used to characterize

Dedekind o-complete lattice ordered linear algebras which admit isotone

functions with familiar functional and order properties as possessed by the

real-valued logarithm or root function.

1. Motivated by the work of Kadison and Singer [5] on triangular operator

algebras, the authors [3] characterized abstract partially ordered linear alge-

bras (polas) which have the order properties similar to an algebra of real

upper triangular matrices. The main idea of the characterization we used in

[3] is that in an algebra of upper triangular matrices the diagonal of the

product of two matrices is equal to the product of the diagonals. We use the

same idea in this paper to characterize the polas which admit an isotone

function with familiar functional and order properties as possessed by the

real-valued logarithm function or root function on the real line.

A dsc-pola, denoted by A, is a real linear associative algebra which

satisifes the following two conditions: (1) It is partially ordered so that it is a

directed partially ordered linear space and 0 < xv whenever 0 < x, y E A.

(2) It is Dedekind a-complete, i.e., if xn E A, x, > x2 > • • • > 0, then

inf{x„} exists. Order convergence can be defined as usual. In this paper, we

assume A has a multiplicative identity 1 > 0. Let I = {y E A: I < y and

y~x > 0). Define Ax = I — Litis shown in [2] that A, is an order-closed and

order-convex commutative subalgebra of A which behaves much like an

algebra of real-valued functions. A, is called the diagonal or functional part of

A. For detailed discussions and examples of Ax, see [2]; there we used the

term polac instead of dsc-pola. A general discussion of lattices and lattices of

operators may be found in [1] and [7].

Next we define a diagonal projection {DP) map A: A -» Ax to be a linear

map such that A(l) = 1 and if x > 0, then x > A(x) > 0. Since A is linear,

it follows trivially that A is isotone, i.e., A(_y) > A(z) whenever y > z, y, z E

A. This map was studied in [3]. Example 2.4 in [3] shows that in some

dsc-pola there may not exist a DP map; however, if it exists, it is unique [3,
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Theorem 3.3]. But, when A is a lattice, there always exists a DP map [2, p.

671]. For convenience, we state the construction briefly. For any positive

x E A, define A(x) = sup(x A "!}• Since 0 < x A "1 < n\, as well as x A

« 1 < x, and since /I, is order-convex and order-closed, we have x /\nl E A,

and A(x) E Ax. For any y E A, define A(y) = A(y +) - A(y"). (y + = y V

0, y~ = (— y) V 0-) Then A(y) G Ax. This map A is a diagonal projection

map. (In [2, p. 671], notation d(-), rather than A(-), was used.) Also, the

reader should note that the concept of a DP map is related to the so-called

"diagonal process" defined by Kadison and Singer; see [4, p. 387].

Examples of a DP map will be given in §2. We now state some important

basic properties of a DP map.

Theorem 1.1. Suppose a DP map A exists on A. Then

(i) if a E Ax, then A(a) = a;

(ii) if a E Ax, then A(ax) = A(xa) = aA(x)for x E A; and

(iii) ifx,y E A, 0 < x, 0 < y, then 0 < A(x)A(y) < A(xy).

Proof. See [3, Theorem 3.2].   □

Example 2.1 in the following section clearly indicates that (iii) is, in general,

a strict inequality. In case that A(xy) = A(x)A(y) for all x,y G A, we say A is

multiplicative. In §3, we shall show that the admittance of some special kind

of isotone functions on A implies A is multiplicative.

2. Some elementary examples will be given to illustrate the basic concepts

involved in this paper. For more examples of a diagonal projection map, we

refer to [3,§2].

Example 2.1. Let A be the algebra of all the real «-by-« matrices with entry

by entry ordering. Then A is a dsc-pola (also a lattice). A, is nothing but all

the diagonal matrices of A. For y = [a¡j] E A, define A(y) to be the diagonal

part of y. It is trivial to verify that A is the DP map, but A is not

multiplicative.

Example 2.2. Let A be the algebra of all the real «-by-« upper triangular

matrices with entry by entry ordering. Define A as in Example 2.1 above. The

reader should note that A is a multiplicative DP map in this example.

On certain class of dsc-polas, there always exists some isotone function

having the familiar functional and order properties as possessed by the

real-valued logarithm or root function on the line; see Remark 3.8. We

describe those functions precisely as follows. Let H = [x E A: I < x). An

isotone function /: H -> A is said to have the logarithm property if it satisfies

the following three conditions:

(l)f(xy) = f(x) + f(y)torx,y EH;
(2)f(x) < x - 1; and

(3) there exists a E H such that/(a) > 1.

Similarly, an isotone function g: H -> A is said to have the root property if

meets the following three conditions:

(l)g(xy) = g(x)g(y);



ISOTONE FUNCTIONS 13

(2) g(x) - 1 < X(x - 1) for a fixed X, 1 > X > 0;

(3) there exists a E H such that 1 < g(a) - 1.

Note that (2) in the definition of / (resp. g) is a standard inequality for the

usual logarithm (resp. root) function. Without (3) we could get a trivial /

(resp. g) by defining/(x) = 0 (resp. g(x) = 0 or g(x) = 1) for all x E H.

Example 2.3. Let A be as in Example 2.2 above with n = 2. For 1 < x =

(I '„), define

log3a 0

/W = \    0 log,/?

Then we can check easily that/is a function with the logarithm property.

Example 2.4. Let A be as in Example 2.3. For 1 < x = (g £), define

' ax'2       0

g{x) = \o     ßW

Choose X = 1/2. Again, it is easy to check that g is a function with the root

property.

3. In [3], various algebraic (order) conditions on A were given which imply

that a diagonal projection map is multiplicative. In this paper, we first prove

the following theorem.

Theorem I. Suppose a lattice dsc-pola A admits a function f with the

logarithm property. Then the diagonal projection map A is multiplicative.

The theorem will be proved with the aid of a series of lemmas. Observe

/(I) - /(I) + /(I) gives/(l) = 0.

Lemma 3.1. If x E H, thenf(x) E Ax.

Proof. By isotonicity and (1), (2) in the definition off, we have

0 = /(l) < f{x) < f{nl + x) = f(n\) + f(l + n~xx)

<(n- 1)1 + (1 + lt~lx - 1) = (n - 1)1 + n~xx

for all positive integers n.

Since A is lattice, we may write/(x) = xn + wn, where 0 < xn < (n - 1)1

and 0 < wn < n~lx for all n. From the fact that Ax is order-convex and

order-closed, we have xnE Ax and/(x) = lim^^x,, E Ax.   □

Lemma 3.2./(x) = f(L(x))for xEH.

Proof. Since 1 < x and A is a DP map, we have 1 < A(x) < x. This, by

the isotone property of/, implies/(A(x)) < f(x). Next, observe A(x) G Ax n

H. By the definition of Ax and Lemma 1.6.6(h) of [2], we know A(x)-1 > 0.

Thus if y = A(x)~'x, then 1 < v and A(.y) = 1 (Theorem 1.1(a)). From

x = A(x) v, it follows that fix) = /(A(x)) + f(y) < /(A(x)) + y - 1. Now

let us apply A to both sides of this inequality. Since both f(x) and /(A(x))

belong to Ax, using Thoerem l.l(i), we obtain f(x) < /(A(x)). Therefore,

/(x)=/(A(x)).   D
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Lemma 3.3. If I < z E Ax andf(z) = 0, then z = 1.

Proof. Note that/(z") = nf(z) = 0; and 1 < z G Ax implies 0 < z~" for

all positive integers «. Now by the definition of/, there exists a E H such that

f(a) > 1. Together, those facts show that

1 < f(a + z") = f(z") + f(l + z~na) < 1 + z-"a - 1 = z~*a.

Therefore, 1 < z" < a for all «. This means z = 1.   □

Proof of Theorem I. For x,y E H, using Lemma 3.2 twice, we have

f(A(x)A(y)) = f(A(x)) + /(A(y)) = f(x) + f(y)

= /i» = f(A(xy)).

Let c = A(x)A(y), d = A(xy). Then I < c < d E Ax by Theorem l.l(iii).

Thus, 1 < c~xd. From the relation f(d) = /(c) +/(c_1¿) and the above

result, it follows that f(c~xd) = 0. By Lemma 3.3, c~xd = I or c = d, i.e.,

A(xy) = A(x)A(y) for x,y E H. Since .4 is directed and A is linear, it is

straightforward to verify that A is multiplicative.   □

Theorem II. Suppose a lattice dsc-pola A admits a function g with the root

property. Then the diagonal projection map A is multiplicative.

Since the proof of this theorem is similar to the proof of the previous

theorem, we only sketch the procedure.

Lemma 3.4. g(«l) G Ax, and \imk_fao[g(nkl)/nk] = 0 for a subsequence

Proof. We first show g(l) = 1. From the definition of g, it follows that

g(l) < 1 and g(a) = g(a)g(l) > 2(1). By [2, Theorem 1.6.3], g(l) has an

inverse. This and the fact that g(l) = g(l)2 yield g(l) = 1. By isotonicity, we

have 1 = g(l) < g(«l) < 1 + X(n - 1)1. Consequently, g(«l) G Ax. Let k

be an arbitrary positive integer. Then

g(«l) = (g(^j 1))*< (l + X(fci - 1)1)*.

Thus

«_1g(«l) < ((1 - X)n~x/kl + Xl)\

In particular, when « = nk = kk, we have

0<(nkyxg(nkl)<{(l-X)k-xl+Xl)k.

Finally, 1 > X > 0 implies limA^tJ0(«fc)_1g(«Al) = 0.    □

Lemma 3.5. g(x) E Axfor x E H.

Proof. Since

1 < g(x) < g(x + «1) = g(«l)g(l + n~xx)

< g(«l)(l + X(l + n~xx - 1)) = g(«l) + (X/n)g(nl)x,
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we have from Lemma 3.4 that there exists a subsequence {nk} such that

1 < g(x) < g(nkl) + (X/nk)g(nkl)x and \irnk^x(nk)-lg(nkl) = 0. Since A

is a lattice, we can proceed as in Lemma 3.1 to conclude g (x) E Ax.   □

Lemma 3.6. g(x) = g(A(x))for x E H.

Proof. Since 1 < A(x) < x, we have g(A(x)) < g(x). Let y = A(x)~'x >

1. Then it follows as in the proof of Lemma 3.2 that g(x) = g(A(x)).   □

Lemma 3.7. 7/1 <z£^, and g(z) = 1, then z = 1.

Proof. Note that g(z") = g(z)n = 1. Then by the definition of g, we have

1 < g(a + z") - 1 = g(z")g(l + z-"a) - 1 < Xz'na,

thus 1 < z" < Xa for all n. This implies z = 1.   fj

The proof of Theorem II can be completed by noting that if we let

c = A(x)A( v), d = A(xy) for x,y E H, then it follows as in the proof of

Theorem I that g(c) = g(d). But, 1 < g(c) E Ax and g(d) = g(c)g(c~ld)

implies g(c~xd) = 1. Hence, by Lemma 3.7, c = d. Thus, A is multiplicative.

D
We now close the article by making the following comment.

Remark 3.8. Any dsc-pola A with a multiplicative DP map A always

admits a function with the logarithm (root) property which we explain as

follows. In [6] it was proved that A, is algebraically and order isomorphic to

an algebra S of continuous, almost-finite, extended-real-valued functions

defined on a compact Hausdorff space. Hence, we may identify A, with S. It

is clear then for 1 < z E Ax, ln(z) and Vz also belong to Ax. For 1 < x £

A, we define/(x) = ln(A(x)) and g(x) =yA(x) . It can be verified easily that

/ and g are functions with the logarithm property and the root property,

respectively.

References

1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., vol. 25, 3rd ed., Amer. Math.

Soc., Providence, R.I., 1967. MR 37 #2638.
2. T. Y. Dai, On some special classes of partially ordered linear algebras, J. Math. Anal. Appl. 40

(1972), 649-682. MR 47 #4890.
3. T. Y. Dai and R. DeMarr, Partially ordered linear algebras with multiplicative diagonal map,

Trans. Amer. Math. Soc. 224 (1976), 179-187.
4. R. V. Kadison and I. M. Singer, Extensions of pure states, Amer. J. Math. 81 (1959),

383-400. MR 23 # A1243.
5._, Triangular operator algebras, Amer. J. Math. 82 (1960), 227-259. MR 22 # 12409.
6. Richard Metzler, Representation of partially ordered linear algebras, Bull. Amer. Math. Soc.

80 (1974), 939-940. MR 50 #6969.
7. H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin and New

York, 1974.

Department of Mathematics, York College, City University of New York, Jamaica,
New York 11451

Department of Mathematics, University of New Mexico, Albuquerque, New Mexico
87131


