GROUPS OF ORDER $p q^{m}$ WITH ELEMENTARY ABELIAN SYLOW q-SUBGROUPS

J. ALONSO

Abstract

Characterization and number of the groups of order $p q^{m}$ with elementary Abelian Sylow q-subgroups. Old methods of O. Hölder and A. E. Western are simplified and generalized.

O. Hölder [1, pp. 340-357] and A. E. Western [2, pp. 230-244] determined the number of groups of order $p q^{2}$ and $p q^{3}$; the method they used for this purpose can be substantially simplified and generalized to the order $p q^{m}$, where m is any positive integer.

We consider first the groups with normal Sylow q-subgroup. Let p, q be distinct primes, G a group of order $p q^{m}$ with elementary Abelian normal Sylow q-subgroup Q, and $P=\langle d\rangle$ a Sylow p-subgroup of G. If $a=$ $\left(a_{1}, \ldots, a_{m}\right)$ is a basis of Q, we write the elements of Q in the form

$$
a^{v}=a_{1}^{v_{1}} a_{2}^{v_{2}} \cdots a_{m}^{v_{m}}
$$

where $v_{i} \in Z_{q}$ (the field of numbers modulo q). G has a presentation of the form

$$
\begin{equation*}
\left(a, d ; a_{i}^{q}, a_{i} a_{j}=a_{i} a_{i}, d^{p}, d a^{v} d^{-1}=A^{M v}\right) \tag{1}
\end{equation*}
$$

where M is a matrix of rank m and order dividing p with entries in Z_{q}; we will refer to M as 'the matrix of d over Q relative to the basis a '.

Theorem. Let p, q be distinct primes, let n be the smallest positive integer such that p divides $q^{n}-1$, and put $p-1=$ nh. For any positive integer m, let H be the set of all h-tuples $e=\left(e_{1}, \ldots, e_{h}\right)$ of nonnegative integers with $\left(e_{1}+\cdots+e_{h}\right) n \leqslant m$. Then the number of groups of order $p q^{m}$ with elementary Abelian normal Sylow q-subgroup, is the number of classes of the equivalence relation \sim on H, where $e \sim e^{\prime}$ if and only if $e_{j}^{\prime}=e_{j+i}, 1 \leqslant j \leqslant h$, for some i (the sum of subindexes is carried modulo h).

For the proof of this theorem we make use of the following well-known lemmas which we state without proof.

Lemma 1. In $Z_{q}[\lambda], \lambda^{p}-1=(\lambda-1) f_{1}(\lambda) \cdots f_{h}(\lambda)$, here $f_{i}(\lambda)$ is irreducible in $Z_{q}[\lambda]$ and

$$
f_{i}(\lambda)=\prod_{j=0}^{n-1}\left(\lambda-z^{x^{i-1} q^{j}}\right)
$$

AMS (MOS) subject classifications (1970). Primary 20D99; Secondary 15A33.
where z is a primitive pth root of unity in $G F\left(q^{n}\right)$ and x is a primitive root modulo p.

Let
(2)

$$
M_{i}, \quad 1 \leqslant i \leqslant h,
$$

be the companion matrix of the polynomial $f_{i}(\lambda)$.
Lemma 2. $\left(M_{i}\right)^{j}$ is similar to M_{i+j} (the sum of subindexes is carried modulo h).

Proof of the Theorem. By the Sylow theorems, $n_{p}(G)=q^{r n}$ with $0 \leqslant r$, $n r \leqslant m$, and correspondingly $o(N(P))=p q^{m-r n}$; therefore, we can write $Q=U \times W$, with $U \subset N(P), U$ of order $q^{m-n r}$, and $W \cap N(P)=E, W$ of order $q^{r n}$. Since P and U are both normal in $N(P), N(P)=C(P)=U \times P$, that is, the matrix of d over U is the identity matrix $I_{m-r n}$. On the other hand, by a known theorem on canonical forms of matrices, we may assume that $W=Q_{1} \times \cdots \times Q_{r}$, such that $o\left(Q_{u}\right)=q^{n}$ and the matrix A_{u} of d over Q_{u} is one of the matrices (2); therefore in (1)

$$
\begin{equation*}
M=I_{m-r n} \oplus A_{1} \oplus \cdots \oplus A_{r} \tag{3}
\end{equation*}
$$

where each A_{u} is one of the M_{i}.
It can be seen that, if the matrix of d over Q_{u} relative to some basis is M_{i}, and a_{1} is a nonidentity element of Q_{u}, then $\left(a_{1}, \ldots, a_{n}\right)$ with $a_{k}=d a_{k-1} d^{-1}$, $2 \leqslant k \leqslant n$, is a basis of Q_{u}, and the matrix of d over Q_{u} relative to this basis is the same M_{i}.

Let e_{i} be number of occurrences of M_{i} among the A_{u}. Clearly $e=$ (e_{1}, \ldots, e_{h}) $\in H$, and the presentations (1) with M as in (3) are in one-to-one correspondence with the elements of H.

By Lemma 2, equivalent h-tuples determine presentations (1) of the same group. It remains to show that nonequivalent h-tuples determine presentations of morphically different groups; we do this by proving that, for a given h-tuple e, the number of n-tuples (c_{1}, \ldots, c_{n}) of linearly independent elements of Q such that $M_{i}, 1 \leqslant i \leqslant h$, is the matrix of d over $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ relative to the basis $\left(c_{1}, \ldots, c_{n}\right)$ is $q^{n e_{1}}-1$. (Observe that the use of d^{j} for d as generator of P preserves the equivalence classes and the use of $g d, g \in Q$, for d introduces no novelty, since d and $g d$ determine, by conjugation, the same automorphism in Q.)

A change of names and order permits to assume that $i=1$ and

$$
A_{1}=A_{2}=\ldots=A_{e_{1}}=M_{1}=\left(\begin{array}{ccccccc}
0 & 0 & . & . & . & 0 & j_{0} \\
1 & 0 & . & . & . & 0 & j_{1} \\
0 & 1 & . & . & . & 0 & j_{2} \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & . & . & . & 1 & j_{n-1}
\end{array}\right),
$$

If $\left(c_{1}, \ldots, c_{n}\right)$ is one of the n-tuples under consideration, then $c_{1} \neq 1$, and, under conjugation by d,

$$
c_{1} \rightarrow c_{2} \rightarrow \cdots \rightarrow c_{n} \rightarrow c_{1}^{j_{1}} c_{2}^{j_{1}} \cdots c_{n}^{j_{n}-1}
$$

c_{i} can be uniquely expressed as a product $c_{i}=b_{i} a_{i 1} a_{i 2} \cdots a_{i r}$ with $b_{i} \in U$ and $a_{i u} \in Q_{u}, 1 \leqslant u \leqslant r$; therefore, under conjugation by d,

$$
b_{1} \rightarrow b_{2} \rightarrow \cdots \rightarrow b_{n} \rightarrow b_{1}^{j_{o}} b_{2}^{j_{1}} \cdots b_{n}^{j_{n-1}}=b_{1}^{j_{0}+j_{1}+\cdots+j_{n-1}}=b_{1}^{1-f_{1}(1)}
$$

and

$$
a_{1 u} \rightarrow a_{2 u} \rightarrow \cdots \rightarrow a_{n u} \rightarrow a_{1 u}^{j_{0}} a_{2 u}^{j_{1}} \cdots a_{n u}^{j_{n-1}}
$$

whence $b_{1}=1$ and $a_{1 u}=1$ for $e_{1}<u \leqslant r$; therefore, $c_{1} \in Q_{1} \times Q_{2}$ $\times \cdots \times Q_{e_{1}}$ which allows $q^{n e_{1}}-1$ choices for c_{1} and consequently for the n-tuple. This concludes the proof of the theorem.
If Q is not normal in G, then $N(Q)=Q=C(Q)$, and by Burnside's theorem, P is normal in G; since $N(P) / C(P) \subseteq \operatorname{Aut}(P)$, the group $G / C(P)$ is cyclic, which implies that $o(C(P))=p q^{m-1}$; it easily follows that:
If $q \nmid(p-1)$, there are no groups in this category, and
If $q \mid(p-1)$, there is only one group with presentation
$\left(a, d ; a_{i}^{q}, a_{i} a_{j}=a_{j} a_{i}, d^{p}, a_{1} d a_{1}^{-1}=d^{k}, a_{i} d a_{i}^{-1}=d\right.$ for $\left.1<i \leqslant m\right)$,

$$
k^{q}=1 \neq k \quad(\bmod p) .
$$

The results of Hölder and Western follow at once from the.preceding discussion.

References

1. O. Hölder, Die Gruppen der Ordnungen $p^{3}, p q^{2}, p q r, p^{4}$, Math. Ann. 43 (1893), 300-412.
2. A. E. Western, On groups of order p ${ }^{3}$ q, Proc. London Math. Soc. 30 (1899), 209-269.

Department of Mathematics, Bennett College, Greensboro, North Carolina 27420

