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SOME ABSTRACT CAUCHY PROBLEMS IN

EXCEPTIONAL CASES

LOUIS R. BRAGG1

Abstract. Let X be a Banach space and let A = B2 in which B is the

infinitesimal generator of a strongly continuous group in X with dense

domain %>(Ä). This paper develops solutions of the abstract Euler-Poisson-

Darboux problem

"«(') + 1-ZffL"Á') = M'),      ' > 0,   m = 1, 2, 3.

\\u(t) - 9\\ -► 0 as / -> 0,       9 e 9)(Ar),   r> m,

and associated Cauchy problem in terms of solutions of related abstract

wave problems. Connections between solutions of certain abstract hyperge-

ometric equations play an important role in these developments. J. B. Diaz

and H. Weinberger and E. K. Blum have obtained solutions of the standard

Euler-Poisson-Darboux problem (i.e. A = A„, the Laplacian) in the excep-

tional cases.

1. Introduction. Let X be a Banach space with norm || ||, let A = B in

which B is the infinitesimal generator of a strongly continuous group in X with

dense domain ^(A) (see [10]), and let A: be a real constant. We shall be

concerned with constructing solutions to the singular abstract Cauchy prob-

lem

u"(t) + (k/t)u'(t) - Au(t) = 0,       u(t) G X,    t > 0,

k(0 +) = </>,       m'(0 + ) = 0,    0 e %Ar),

when k = — 1, -3, —5, ... as well as to closely related problems. In this, we

understand that the initial conditions are taken on in the sense of the norm,

i.e., ||w(f) - <i>|| -> 0 as t -* 0, and that r is a large positive integer. Following

the terminology used in the case of the standard Euler-Poisson-Darboux

equation, we refer to these values of k as the exceptional values. J. A.

Donaldson [13] established the existence and uniqueness of solutions of (1.1)

when k > 0 while exhibiting nonuniqueness when k < 0. The shifting rela-

tions developed in [5] and [7] permit one to obtain solutions of (1.1) for k < 0
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but not exceptional. In the exceptional cases, a method is given in [5] that

permits one to construct a simple logarithmic solution if A^~k''2 ■ <p = 0 (and

a nonlogarithmic solution if A(X~k)/1 • <b = 0). These conditions are generali-

zations of the Weinstein polyharmonic requirement (see below). Additional

results pertaining to (1.1) are given in [14].

The problem (1.1) is, of course, a generalization of the familiar problem for

the Euler-Poisson-Darboux equation:

k
utt(xx,... ,xn;t) + -ut(xx,... ,xn;t)

(12) -bnu(xx,...,x„;t) = 0,       t>0,

u(xx,...,xn;0+) =f(xx,...,xn),       ut(xx,...,xn;0+) = 0,

A„ = Dx + ■ ■ • + DXn, which has been the subject of an extensive number of

research articles. Among the most notable contributions are those by L.

Ásgeirsson [1] for the case k = n - \; A. Weinstein [19] for the case

k > n — 1 and [20] for the case k < n — 1, k not exceptional; J. B. Diaz and

H. Weinberger [12] for the case k < n — 1 including exceptional values and

E. K. Blum [2], [3] for k < 0. Weinstein pointed out the significance of

requiring f(xx,... ,xn) to be polyharmonic in developing solutions (1.2) in the

exceptional cases. Diaz and Weinberger employed an analytic continuation

technique to obtain solutions of (1.2) in the exceptional cases for more general

choices for f(xx,... ,xn) while Blum obtained solutions in such cases by

reducing their development to the treatment of (1.2) with k = \. Following

either procedure, the solutions obtained involve logarithmic terms. The

methods used in these latter two papers are specifically tied in with the

Laplacian operator (such as spherical means, etc.) and cannot be generalized

to treat (1.1) in the exceptional cases.

Our treatment of (1.1) in these exceptional cases is based upon an

elementary relation connecting a solution of an abstract Cauchy problem

involving an "exceptional" hypergeometric equation (of the form tw"(t)

- mw'(t) - Aw(t) = 0, m = 0, 1, 2, ... ) to the solution of an abstract

Cauchy problem involving a nonexceptional hypergeometric equation. This

relation is given in §2 and involves logarithmic terms. Through the use of

Taylor's theorem, this relation is then used to construct solutions of (1.1) in

the exceptional cases. The reduction of the problem to a single nonexceptional

case is reminiscent of Blum's approach in the case of (1.2). Finally, by

employing a theorem on related partial differential equations from [5], this

relation is used in §3 to solve a somewhat different singular Cauchy problem

in an exceptional case.

It should be mentioned that one can use a variety of forms of logarithmic

solutions of standard "exceptional" hypergeometric equations to derive solu-

tions of (1.1) for k = — 1, -3, -5, ... because of nonuniqueness. Such

logarithmic solutions are given, for example, in [17]. The form of the result we
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use ties in more closely with our earlier work on related partial differential

equations.

2. Solutions of (1.1). The result to be employed for the construction of

solutions of (1.1) in the exceptional cases is given in

Theorem 2.1. Let Xbea Banach space with norm || j| and let A = B2 in which

B is the infinitesimal generator of a strongly continuous group in X with dense

domain ty(A). Let U(a) be a solution to the abstract Cauchy problem

aU"(a) + U'(a) - AU(a) = 0,       a > 0,
(2.1)

(7(0 +) = <f>,       <f> G 6Ù(Ar), r any positive integer

and define V(a) by the relation

(2.2)        V(a) = U(a) + {a \na}U'(a) - 2aD„( U(o)-U(ai)d^

Then V(a) is a solution to the abstract Cauchy problem

aV"(a) - A V(a) = 0,       a > 0,
(2.3)

V(0 +) = <¡>.

This formula for V(a) can be derived from the integral (3.1) of [7] by making

use of finite and logarithmic parts of divergent integrals (see [9]) but the

derivation is rather lengthy because of technical details. For the purposes of

brevity, we verify the result directly.

Proof. Rewriting (2.2), we have

V(a) = U(a) + {a lna}UXa) - 2 £ '^-f^*

The integral in (2.2) is taken in the strong Riemann sense.

Differentiating this with respect to a, we find that

V'(a) = 2U'(a) + (lna)U'(a) + (a lna)!/»

_9 fx U'(p) + oU"(o) - Wit*) - ai2U"{aO,,
Jo' 1-1 a*

= 21» + ^{(Ino-)L» - 2A ( ^-***>*

The last member of this equality follows by eliminating all of the second

derivatives of U from the second member of this equality by using the
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equation in (2.1) and by making use of the strong integrability to remove A

from under the sign of integration [10]. Similarly,

oV"(o) = 2oU"(a) + AU(a) + A{(a lna)U'(a)}

-2aAlo —r=1—rf*'

AV(a) = AU(o) + A{(o lno))U'(o) - 2A /J °U'{a) -_«*"'(*>¿g.

A comparison of the right members of these two relations shows that the

equation in (2.3) is satisfied provided that

(2-4) oU"(c)-A^ ÏUè(oï)dt = (J.

Upon replacing U"(a) by A U(a) - U'(o) and evaluating the integral in (2.4)

by parts, (2.4) becomes

-Ug(o) + A Jo' U(ot)dt = -U0(o)+f¿ AU(oi)di

= -i/» +JT1 HU"(oi) + U'(<,t)]di

= -U„(o) + JT1 l[oU'{ot)]dt

= -W + ífoU^dt = °-

Hence, equation (2.4) holds so that the equation in (2.3) is satisfied. It is easy

to verify that the initial condition in (2.3) is satisfied by use of a simple norm

inequality.

Corollary 2.1. Given the conditions of Theorem 2.1, let U(a) denote a

solution of

aU"(o) + U'(o) -AU(a) = 0,       a > 0,

(2.5)
i/(0 +) = (-l)mAm<b/m\,       <b 6 q>(Ar),

in which r is any positive integer > m and let

(2.6)        V(o) = U(a) + (o ]nv)U'{o) - 2oDa£ U{a\\U^è)dZ.

Then the function
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^(a) " * " ThS" + 2! m(m - 1) +

(2.7)

(m- 1)1 ml JO        (m-l)\ *

is a solution of the abstract Cauchy problem

aW"(a) - mW'(a) = AW(a),       a > 0,

(2.8)
W(Q +) = <f>.

Proof. This follows from Theorem 2.1 by an application of Taylor's

theorem. The reason for not specifying the value of r earlier is that its choice

is clearly dependent upon the equation under consideration.

With the change of variables a = t2/4 in (1.1), problem (1.1) becomes

mL» + ((k + l)/2)û» - Au(a) = 0,
(2.9)

w(0 +) = <!>,       <J> G <%(Ar),

in which w(a) is a solution function corresponding to u(t) under the stated

change of variables. Then, if k = —(2m + 1), the equation in (2.9) is precisely

the equation involved in problem (2.8). Hence, ü(a) is given by (2.7) and a

solution of (1.1) for k = -(2m + 1) is «(f) = u(t2/4).

Taking a = t2/4, it follows that the function U occurring in Corollary 2.1 is

a solution of the abstract Euler-Poisson-Darboux problem

(2.10) U"^t2^ + (VW«V4) - A U(t2/4) = 0,

C/(0 +) = (-r/W«!,       Ut(t2/4)\l=0+ = 0.

This function U(t2/4) can be expressed in terms of the solution w(t) of the

abstract wave problem

w"(t) - Aw(t) = 0,       t > 0,

(2-11)
w(0 +) = (-lf^/m!,       w'(0 +) = 0,

by means of the integral [4, p. 609]

A solution of (2.11) exists if Am<¡> E <>Ù(A). There exist explicit constructions

for the function w(t) in (2.11) (see [15], [16], [6], [11]) in terms of the group

generated by B.
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3. A further application. Consider the singular Cauchy problem

Ztt(x,t) = Zxx(x,t) + (k/t)Zx(x,t),

(3.1)
Z(x,0) = <t>(x),       Zt(x,0) = 0,

in which <f>(jc) is taken to be a bounded analytic function. The equation in this

resembles the Euler-Poisson-Darboux equation in one space variable except

that the term t~x multiplies a space derivative term rather than a time

derivative term. For k > 0, we reduce the solution of (3.1) to the solution of

a problem analogous to (2.1).

Introduce the change of variables t = £/2 in (3.1) followed by the changes

of variables y = x - £/2, z ™ £ Then (3.1) becomes

zDz(zDz - \)Z(y,z) - zD(zDz + k/2)2(y,z) = 0,

(3.2)
Z(y,0) = <b(y)

in which Z(y,z) corresponds to Z(x,t) under the stated changes of independ-

ent variables. Using Theorem 3.1 of [5], it follows that, for k > 0,

(3.3) Z(y,z) = j^2)/0" e-°okl2~X V(y,zo)do

where V(y,z) is a solution of the problem

(3.4) zVzz(y,z) - Dy V(y,z) = 0,        V(y, 0 +) = <^y)

obtained by deleting the operator factor (zDz + k/2) from the equation in

problem (3.2). But the equation in (3.4) is precisely the equation in (2.3) with

A taken to be the derivative operator D . Therefore, a solution of (3.4) can be

obtained by selecting U(y,z) to be a solution of

zUzz(y,z) + Uz(y,z) - D U(y,z) = 0,

(3.5)
U(y,0+) = <b(y)

and forming the function V(y,z) as in (2.2).

The function U(y,z) in (3.5) can be obtained from the solution of the

"wave" problem

Wzz(y,z) - DyW(y,z) = 0,

(3.6)
^,0+) = «i,G0,     ^(>>,o+) = o,

by means of (2.12). But the function W(y,z) is related to the solution function

of the problem

(3.7) Wz(y,z) - Dy W(y,z) = 0,        W(y,0 +) = <b(y)

by means of the relation
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(3.8) W(y,z) = Y(\)zt;x{s-X'2 W(y, 1/44W

in which t~x{ }-_»_j denotes the inverse Laplace transform with s the variable

of the transform and z2 the variable of inversion (see (2.2) of [8]). However, it

readily follows that W(y,z) = $(y + z) so that all of the functions needed to

obtain a solution of (3.1) have been defined. The function Z(x,t) can now be

readily obtained from them.

Suppose one were to replace the partial differential equation in (3.1) by the

equation

(3.9)        ztt(x, t) = r2m^m+x^zxx(x, t) + vrm/(m+x)-xzx(x, t),

m a nonnegative integer. Upon introducing the change of variables £

= 2(w + l)r1/('"+1) followed by the changes y = x - £/2, z — & this equa-

tion becomes

(3.10) zDz(zDz -m- \)Z(y,z) - zDy{zDz + ^ + ^ ~ ^¿(y, z) = 0

and would replace the equation in (3.2). Using the above procedures, it

follows, for v > m/(m + 1), that

(3.11) 2(y,z) = [r(^ +j> - ")]"' Ç e-,(**.H.)/^i V(yMdo

in which V(y, z) is a solution of the problem

(3.12) zVzz(y,z) - mVz(y,z) - Dy V(y,z) = 0,        V(y,0 +) = <h(y).

But this problem can be solved by an application of Corollary 2.1.
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