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AN EXTENSION OF AN OPERATOR INEQUALITY

FOR i-NUMBERS

JAMES A. COCHRAN

Abstract. If it is assumed that the s-numbers associated with a given

compact operator are ordered in the usual fashion, a basic result concerning

infinite series of powers of these j-numbers can be appropriately restated so

as to refer solely either to the lead terms of the series or to its tail. A simple

proof, based upon an interesting auxiliary result concerning stochastic

matrices, is given for this useful improvement.

A fundamental result in operator theory (see, for example, McCarthy [6],

Gohberg and Krem [5], or Dunford and Schwartz [3]) relates infinite power

sums of the i-numbers (characteristic numbers) of a given operator and

corresponding power sums of the norms of the images, under the operator, of

orthonormal basis vectors for the underlying Hubert space. In the case of a

compact operator T acting on a Hubert space %, the following represents an

extension of this result found useful in recent investigations of integral

operators [2], [7]:

Theorem. 7/0 < r < 2, then for arbitrary m > 1,
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In these expressions the i-numbers are ordered in their natural nonincreas-

ing manner and the inf and sup are taken over all orthonormal bases of %. If

r =7^ 2, equality occurs, as expected, if and only if {*„} is an appropriately

ordered orthonormal basis for % consisting of characteristic functions (eigen-

vectors) for the related nonnegative definite operator T* T.

The proof of (2) can be accomplished by employing several auxiliary results

of Gohberg and Kreïn [5]. Alternatively, both (1) and (2) can be established

making appropriate use of a theorem of Fan [4] (see also Beckenbach and

Bellman [ 1, p. 77]). A simple and unencumbered demonstration, however, can

be based directly upon the following result on doubly-stochastic matrices-a
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result which was subsidiary to the Fan theorem, but certainly is of interest in

its own right.

Lemma. Let the nonnegative elements p^ (i,j= 1, 2, . . . ) be such that
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If a¡, b¡ (i = 1, 2, ... ) are two nonincreasing sequences of nonnegative

numbers, then
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(3) 2a,2M<2«,A-
/=!      y=l /=1

In order to prove the main theorem, we let {<!>„} be a sequence of

orthonormalized characteristic functions of the operator T* T corresponding

to the naturally ordered i-numbers s2(T). Then for arbitrary ¥ in % and

r>2,

r/l
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by Holder's inequality. If {^„} is an orthonormal basis for %, it follows,

using Parseval's relation, that
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This  inequality  and   the  identifications  a, = 1,   6, = [i/(7,)]r,   and pu =

K^,-, í>y)|2 in the Fan Lemma immediately lead to the desired result, namely

m m

2 F*„|f < 2 [s„{T)].
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In the case of 0 < r < 2, the comparable chain of inequalitities is
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When ¥„ = <&„ (n = 1, 2, . . . ), all the various inequalities above become

equalities-and when r # 2, only then-thereby completing the proof of (1), (2)

and the Theorem.
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