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ON A THEOREM OF FURSTENBERG AND THE

STRUCTURE OF TOPOLOGICALLY ERGODIC MEASURES

LEWIS PAKULA AND ROBERT SINE

Abstract. An almost everywhere convergence theorem for topologically

ergodic measures stated by Furstenberg for homeomorphisms is extended to

Markov operators on C(X) with compact Hausdorff state space. A struc-

ture theorem for topologically ergodic measures is obtained in the compact

metric case again in the more general setting of Markov operators.

1. Introduction. Let I be a compact Hausdorff space and let T be a

bounded linear operator on C(X) satisfying Fl = 1 and / > 0 implies

Tf > 0. Such an operator is called a Markov operator; this class of operators

is a natural and nontrivial extension of the class of operators induced by

homeomorphisms of X. Many of the concepts of topological dynamics extend

to Markov operators with no difficulty. Thus we say u is an invariant

probability if T*¡i = p (where p is a regular Borel positive normalized

measure on X). A closed set D is called invariant if for each x in D we have

supp T*8(x) contained in D. We will always use the word support to mean

that unique closed set which is the complement of the union of all open sets

annihilated by the probability. If a set B is measurable and p(B) = 1, we will

say u is carried by B. The following properties are well known and not

difficult (see [7]). The support of an invariant probability is an invariant set

and each nonempty invariant set carries at least one invariant probability.

We will have need of the notion of the invariant core of a closed set. For

this let D be an arbitrary closed set. Then we define the core by

D* = {x E D: supp T*"8(x) c D for all n).

Then D* is a closed and invariant subset of D but may very well be empty.

For a discussion of invariant cores with the proofs of the above assertions see

[8] or [5] (where the term "self-supporting part") is employed.

2. Topologically ergodic probabilities. Our definition is taken from Fürsten-

berg [3, p. 21].

Definition. An invariant probability À for (X, T) is topologically ergodic if

X(D) = 0 or 1 for all closed invariant sets D.

T extends to a bounded linear operator on the space B of bounded
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measurable functions on X. Recall that an invariant probability X is ergodic

iff Tf = f [a.e. X] for f in B implies / is constant [a.e. X]. We have a similar

characterization for topologically ergodic probabilities.

Theorem 1. An invariant probability X is topologically ergodic iff for f

bounded lower-semicontinuous, Tf = f[a.e. X] implies fis constant [a.e. X].

Proof. First, suppose / is bounded l.s.c. with Tf = / [a.e. X] for the

invariant probability X. If / is not essentially constant [a.e. X] then there is a

lower section set D = {x: f(x) < d) so that 0 < X(D) < 1. Since/was l.s.c.

we know D is a closed set. The function g = / A d is also l.s.c. and satisfies

Tg < g [a.e. X]. But if we integrate this last inequality with respect to the

invariant probability X we obtain Tg = g [a.e. X]. Now in general the core of a

closed set may be empty, but we claim here that X(D) = X(D*). Let

Y - {x: TJ(x) = f(x), T"g(x) = g(x) for all «}.

Then X(Y) = 1 and/ > g on Dc,f = g on D and /(/ - g) dT*"8(x) = 0 for

x in D n X imply that T*n8(x)(Dc) = 0 for x in D n X. Hence £» n X C

D* c D and À(Z) n X) = X(D) gives X(£») = a(Z>*). Thus since D* is closed

and invariant with 0 < X(D*) < 1, we can conclude that X is not topologi-

cally ergodic.

Conversely, suppose X is not topologically ergodic. Then there is a closed

invariant set D with 0 < X(D) < 1. Let / be the indicator function of the

open set U = X \ D. By invariance of D, f is subinvariant (Tf < /), so

integrating with respect to X we get Tf = /[a.e. X]. Thus / is a bounded l.s.c.

function which is A-invariant but not A-constant. This finishes the proof.

Now we turn to another useful construct, namely the hitting probability or

Brunei function. Given the indicator function / of a Borel set A (or more

generally, given a bounded Borel function /) the Brunei function /'(/) is

defined to be the minimal subinvariant majorant off. Given a bounded Borel

function/then /'(/) exists and is Borel. If/ is l.s.c. then /'(/) is also l.s.c. When

/ = \A then we use the notation i (A). We have

i(A)(x) = probability of the process ever hitting A given that it starts at x.

It is important to point out that this includes the hitting of A at time n = 0.

Thus i (A) > \A for all Borel sets A. These envelope functions were in-

troduced by Brunei in his work on L, contraction ergodic theorem (see [4]).

Detailed proofs of existence and other useful properties of i (A) together with

applications when the state space is a topological space can be found in [2]

and [8].

A probability measure ft on A1 is called diffuse if the support of u is X.

(Note fi may be atomic and still be diffuse.) If u is an invariant probability

then Y = supp /x is a closed invariant set and the process may be restricted to

new state space Y. Since there is nothing we can say about the process with

respect to m off of the support of ¡i we make the assumption that the

normalization of restricting the process to supp ft is always made. This
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convenient restriction in what follows to diffuse probabilities entails no loss

of generality.

Theorem 2. Let \ be a diffuse invariant probability. Then X is topologically

ergodic iff for each nonempty open set U we have

(*) X{x: i(U)(x) = 1} = I.

Proof. Suppose first that X is topologically ergodic diffuse and U a

nonempty open set. Then i(U) is subinvariant, so (by integrating with respect

to X) we, in fact, have

Ti(U) = i(U)    [a.e.X].

But i(U) is bounded l.s.c. so this X-invariant function must be X-constant. But

1 v </(£/)< 1 implies that i(U) is 1 on U. Since X is diffuse (so X(U) > 0)

we conclude i(U) = 1 [a.e. X]. Conversely, if X is not topologically ergodic we

select a closed invariant set D with 0 < X(D) < 1. Then we have for U =

X \ D, i(U) = Xu at all points of X. But then equation (*) fails so we are

done.

Let Pz be the Kolmogorov probability measure (on Q, the sample path

space for (X, T)) for the Markov process X0, Xx, . . . determined by the

transitionp(x, A) = T*8(x)(A) and initial distribution X0 = z.

If X is second countable, in particular if X is metrizable, then Theorem 2

easily implies

X{z: Pz (path X0, Xx, . . . is dense in X') = 1} = 1

if X is a diffuse topologically ergodic probability. For if {rV¡} is a countable

open base then

fl {z: i(W¡)(z) = 1} = {z: Pz (path enters W¡) = 1 for all/}

= {z: P2 (path enters W¡ for all i) = 1}

since the Pz probability of the intersection of countably many sets with Pz

probability 1 is again 1. Similarly the X measure of the intersection on the left

is 1 by Theorem 2.

The generalization of Furstenberg's theorem [3, p. 22] holds without addi-

tional assumptions on X:

Theorem. Suppose X is a diffuse topologically ergodic probability andf > 0 is

continuous. If Z is the set of points z in X such that

max{f(X0),f(Xx ),..., /(*„)}-> ||/IL

holds almost surely (Pz) then X(Z) = 1.

To prove this we note that the set on which a continuous function attains

its maximum is a Gs set and the result follows as above from Theorem 2 and

the observation that the intersection of a countable collection of sets of

maximal measure is again of maximal measure.
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3. Structure of topologically ergodic probabilities. In the previous section we

consider results for topologically ergodic probabilities which were analogues

of results for ergodic probabilities. One of the most elegant results for ergodic

probabilities is the characterization as the extreme points of the compact

convex set of all invariant probabilities. It is to the analogue of this result that

we turn now. To gain some intuitive feeling for the structure we consider the

following. Suppose [an] are ergodic probabilities with support (on) = X for

all n = 1, 2, .... If an > 0 with 2a„ = 1, then it is not difficult to show that

A = 2Zanon is a diffuse topologically ergodic probability. The intuitive picture

is that the diffuse topologically ergodic probabilities are members of a facet

of diffuse ergodic probabilities. This picture is almost technically correct; the

technical requirement is that X have a Choquet representation carried by the

diffuse ergodic measures. It is not at all clear a priori that the collection of

diffuse ergodic probabilities is nonempty when there is a diffuse topologically

ergodic probability X.

Some aspects of the results of this section hold under weaker assumptions

but we will assume throughout this section that X is a compact metric space.

Let ta" be a compact set of probabilities on X and let K0 be the diffuse

probabilities in K. We remark that K0 is a Gs set since if { W¡) is a global

basis for the topology of X and K¡ = {p E K: p(W¡) = 0}, then K¡ is

compact and we have K0= K \ U K¡.

For the structure theorem we must modify this decomposition slightly.

Note first that if X is a diffuse topologically ergodic probability and D is a

proper closed invariant set then X(D) = 0.

Again select a global base {W¡) and set D¡ = X \ W¡. Let E¡ be the

invariant core of £>,. Now for each ergodic invariant probability, u, which is

not diffuse we select one set W¡ with W¡ n supp ft = 0. Then E¡ is not empty

and indeed E¡ carries p. Now we set Kt■ = { p E ext K: supp p c E¡) and

Kd = ext K \ U K¡.

Theorem 4. X is a diffuse topologicall ergodic probability iff X has a Choquet

representation dRx,

W (X,f)=ff(p)dRx(li),

which is carried by Kd, the set of diffuse ergodic probabilities. In particular, if

(X, T) has a diffuse topologically ergodic probability then Kd is not empty.

Proof. First we observe that the Choquet representation (♦) above holds

not only for the continuous affine functions on K but for affine functions of

the first Baire class as well. Thus we may apply (*) for functions/ = \D where

D is closed. (See [1] and [6].)

Suppose now that X is an invariant probability with a Choquet representa-

tion Rx carried by Kd. If supp(X) = D is proper in X then p(D) = 0 for each

diffuse ergodic probability. Thus
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\=X(D)=f\D(p)dRx(p) = 0

and this contradiction shows support X = X. Next suppose that D is a closed

invariant proper subset of X. Then again p(D) = 0 for all u in Kd so

X(D) = 0. Thus X is topologically ergodic.

Conversely, suppose X is diffuse topologically ergodic. Then Rx(ext K) =

Rx(Kd) + RX(\J K¡). Suppose Rx(Kd) < 1. Then RX(K¡) > 0 for some i.

Then

X(Ei)=flEi(p)dRx(ß)>0.

We conclude that either X(£(.) = 1 so that X is not diffuse or 0 < X(F,) < 1

so that X is not topologically ergodic. In either case we have a contradiction

which finishes the proof.

It is of some interest to compare the results here with the negative results of

B. Weiss [9]. Suppose that <p is a homeomorphism of a compact metric space

and Tf = / ° 4>. If there is at least one point which has dense orbit and there

is a diffuse invariant probability, it is natural to ask if there then exists a

diffuse ergodic invariant probability. The example constructed by Weiss

shows that the answer is no. On the other hand Theorems 2 and 4 imply the

following: If X is a diffuse invariant probability and almost all points with

respect to X have dense orbits, then there is a diffuse ergodic probability.
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