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HANKEL OPERATORS WITH

DISCONTINUOUS SYMBOL

STEPHEN POWER1

Abstract. Douglas's localisation theory for Toeplitz operators is used to

show that there exist certain Hankel operators with discontinuous symbols

which do not lie in the C*-algebra generated by the Toeplitz operators. As a

simple corollary we also see that these operators do not he in the closed

linear span of the positive Hankel operators.

Introduction. Let L2 be the Hubert space of square integrable functions on

the unit circle T, with complete orthonormal basis {en; n E Z} where en

denotes the function z". J is the unitary on L defined by Jen = e_n for n in

Z. H2 denotes the Hardy subspace spanned by {en; n > 0} and P is the

orthogonal projection of L2 onto H2.

For an essentially bounded measurable function <j> in L°°, the Toeplitz

operator T on H2, is defined by T, = PMÁH2 where M. is the usual

multiplication operator on L2. We call <> the symbol of the Toeplitz operator

T. The Hankel operator on H2, with symbol </> in L°°, is defined by

SA = PJMAH2.
9 9'
Whilst the Toeplitz and Hankel operators are formally rather similar, quite

different techniques are usually needed to study them. However in this note

we shall use Douglas's localisation theory for Toeplitz operators [2] to show

that the closed linear span of the positive Hankel operators does not contain

certain Hankel operators with discontinuous symbol. This result has also

appeared in [4]. The proof was based on Widom's characterisation of positive

Hankel operators [5] which we avoid here.

Notation. For </> in L00, the functions <f>* and 4> are defined by

<j>*(z) = <f)(z)   and   </>(z) = <¡>*(z)       (z E T).

Thus we have JM^ = M^J.

Let T denote the C*-algebra generated by the Toeplitz operators and let P

denote the closed linear span of the positive Hankel operators.

The following simple lemma shows that the symbol of the adjoint of a
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Hankel operator is not the 'local adjoint' of its symbol. The proof of Theorem

8 rests on this fact.

Lemma 1. S* = S^for <p G L°°.

Proof. For / and g in H  we have

OV'*) - (JM+f>8) = (M**Jf>8) = W>M+g) = (f,S^g).

Lemma 2. S* S^ = T^ - T¿ T^for <t>,xbEL°".

Proof.

S¡S^ = PJM-^PJM^\H2 = PM^JPJM^H2 = PM^Z(MZJPJM2)M-^\H2.

Since MjJPJMz = I — P we have

S;S* = PMfA* - P)MH\H2 = T^ - %&r

Lemma 3. P C T.

Proof. Let S be a positive Hankel operator. Lemma 2 shows that S2 E T.

Since S is the unique positive square root of S2 and T is a C*-algebra we have

5 G T and the lemma follows.

A well-known classical theorem for Hankel operators is due to Hartman

(see [3] or [1]). This states that a Hankel operator is compact if and only if its

symbol can be chosen to be continuous. Since S¿ = 0 only when <f> G z//°° it

follows that S¿ is compact if and only if <p G H™ + C(T). We shall use this

result in Theorem 8.

Lemma 4. If<b,ip £ £°° and ifcbonp is continuous then T. — T.T.is compact.

Proof. Lemma 2 shows that S*^SZ^ = T^- 7j, 7^ and Hartman's theorem

completes the proof. Alternatively see [2, p. 184].

The following two localisation theorems appear in Douglas [2, pp. 198, 199].

For X E T, let Jx be the closed ideal in T generated by {T^ : <p G C(T), <b(X)

= 0} and let <3>x be the natural *-homomorphism of T onto the quotient C*-

algebra Tx = T/7X. Let <ï> be the *-homomorphism from T to 2xer®T\

defined by $ = ¿Xe7- 9$x.

Theorem 5. ker $ contains the ideal of compact operators K and $ induces a

*'-isometrical isomorphism

Q-.l/K^  2   ©Tx.
XBT

Let A be the maximal ideal space of L00 and let Fx = {m E A; m(z) = X)

be the fibre in A over X for X G T.
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Theorem 6. //{</>,-.}" =1 are functions in L°° with Gelfand transforms <j>y on A

andX E T then $A(2,- Yij T^) depends only on the functions {<?>,■, |FX}" .,.

Corollary 7. //</>, i/> E L°° and-ty is continuous on a neighborhood of X £ T

then \(T^ - T9T¿ = 0.

Proof. Theorem 6 implies that we can assume \p to be continuous on T.

The corollary then follows from Lemma 4 and Theorem 5.

Theorem 8. Let a be a nonreal complex number of modulus one and let § be

a function in L00 which is continuous on T apart from a (proper) jump discontinuity

at a. Then S9 g T.

Proof. By Lemma 2, S* S9 = 7^2 - Tzf T-Z9 and so by Corollary 7

®X(S; S9) = 0 tor X * a.

Suppose now that S9 E T. Since <1>A is a *-homomorphism <bx(Sv) $X(S9)

= 0 for X # a. Similarly, since by Lemma 1 S* = S¿ and $ is continuous

apart from a jump discontinuity at s, it follows that $X(S9)®X(S9) = 0 for

X # a. Thus $X(S9) = 0 for all X E T. By Theorem 5 S9 is compact and so

by Hartman's theorem <f> E H00 + C(T). Since such functions cannot have

jump discontinuities we conclude that S9 E T.

Corollary 9. Let <|> be a function in L°° which is continuous apart from a jump

discontinuity at a nonreal point of the unit circle. Then S. does not lie in P.

Proof. Immediate from Theorem 8 and Lemma 3.

The corollary does not remain true if the discontinuities occur at —1 or +1.

In fact in [4] it is shown that if </> is continuous apart from jump discontinuities

at +1 or-1 thenS,, E P.

It would be interesting to settle whether T contains any other Hankel

operators besides those in P.
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