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ON THE VON NEUMANN ALGEBRA OF

AN ERGODIC GROUP ACTION1

ROBERT J. ZIMMER

Abstract. We give a criterion that an ergodic action be amenable in terms

of the operator algebra associated to it by the Murray-von Neumann

construction.

The notion of an amenable ergodic action of a locally compact group was

introduced by the author in [7]. (The reader is cautioned that this is not the

same as the notion introduced by Greenleaf in [3]; see [7] for a discussion of

this point.) In this note, we give a criterion for an action of a countable

discrete group to be amenable in terms of the von Neumann algebra associa-

ted to it by the classical Murray-von Neumann construction.

We recall that J. T. Schwartz has introduced the following property of von

Neumann algebras [6, p. 168]. If A is a von Neumann algebra on a Hubert

space H, A is said to have property P if for any T E B(H), the closed (weak

operator topology) convex hull of [U*TU\U E U(A)} contains an element

of A', where U(A) is the unitary group of A, and A' is, as usual, the

commutant of A. If G is a countable discrete group and R(G) the von

Neumann algebra generated by the right regular representation of G, then

R(G) has property P is and only if G is amenable [5, Proposition 4.4.21],

More generally, Schwartz shows that if G is amenable and acts ergodically on

a Lebesgue space (S, n), then R (S X G), the algebra of the Murray-von

Neumann construction (described below) has property P [6, p. 198].

Conversely, if R(S X G) has property P and ¡u is finite and G-invariant, then

G must be amenable [6, p. 200]. The point of this note is to prove a stronger

converse, without the assumption of a finite invariant measure. Namely, we

show that if R(S x G) has property P, then 5 is an amenable G-space

(definition below). The result quoted above in the case of finite invariant

measure then follows from [7, Proposition 4.4], which asserts that if 5 is an

amenable G-space with finite invariant measure (or mean), then G itself must

be amenable.

We recall the Murray-von Neumann construction. Let S be a standard

Borel space, G a countable discrete group with a right Borel action of G on S.

We suppose ¡u is a probability measure on 5 quasi-invariant and ergodic
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under G. We let r(s, g) be the Radon-Nikodym cocycle of the action, i.e. a

Borel function such that d¡x(sg) = r(s, g)dp(s). Let Ug: L2(G)^>L2(G) be

the right regular representation of G, and define a unitary representation Ug:

L2(S X G)^L2(S X G)by

(Ûgf)(s,h)=f(sg,hg)r(s,g)1/2.

Here S X G has the product measure of p with Haar measure. Let Vg be the

left regular representation of G on L2(G) and define Vg: L2(S XC)^ L2(S

x G)by

(Vgf)(s,h)=f(s,g-lh).

If/ G LX(S), then/defines a multiplication operator Mf on L2(S X G) by

(Mjh)(s, g) = f(s)h(s, g) and a multiplication operator Nf by (Nfh)(s, g) =

f(sg)h(s, g). We let L be the von Neumann algebra generated by {V, NA

and R the von Neumann algebra generated by {Ug, Mf). Then R' = L, and

there is a unitary involution J on L2(S X G) such that /ÄJ = L [1, pp.

137-138]. Thus R and L are spatially isomorphic and one will have property

P if and only if the other does.

The definition of an amenable ergodic action given in [7] is based upon an

"invariant section property" and is motivated by the virtual subgroup

viewpoint of Mackey. We review the definition. Suppose £ is a separable

Banach space and y: S X G —> Iso(¿T) is a Borel cocycle, where Iso(£) is the

group of isometric isomorphisms of E with the Borel structure of the strong

operator topology. Let E* be the unit ball in the dual of E with the a(E*, E)

topology. Then there is an induced adjoint cocycle y':SxG-> Horneo^*),

y*(s, g) = (y(s, g)*)_1. A Borel function </>: S —> E\* is called an invariant

section for y if for each g G G, y*(s, g)<t>(sg) = <b(s) for almost all s G S.

Now suppose that for each s, As c E\* is a compact convex set, that

{(s, x)\x G As} is a Borel subset of 5 X £f, and that for each g, y*(s, g)Asg

= As for almost all s. Then 5 is called an amenable G space if for each such

cocycle y and each such collection {As}, there is an invariant section <j> with

<¡>(s) G As for almost all s. In [7] it is shown that any ergodic action of any

amenable group is amenable, but that nonamenable groups can also have

amenable actions. For example the range-closure of a cocycle [4] of an

amenable action into any locally compact group is amenable [7, Theorem

3.3].

Theorem. // G is a countable discrete group acting ergodically on (S, p.) and

the von Neumann algebra R (or equivalently, L) has property P, then S is an

amenable G-space. (Here p is a quasi-invariant probability measure.)

Proof. If / G L2(S x G), define fs(g) = f(sg, g)r(s, g)1/2. Then / G

L2(G) for almost all s, and a straightforward calculation shows that /—>

J®/ dp is a unitary isomorphism of L2(S X G) = ffL2(G). One further

readily verifies that under this isomorphism, Ug corresponds to ffU and that

if T G B(L2(S X G)) corresponds to the decomposable operator f®Ts in
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B(ffL2(G)), then T commutes with Vg if and only if for each g, VgxTsVg =

Tsg for almost all s. Since the operators Üg and Mf, f E Lœ(S), correspond

to decomposable operators, it follows that every element of R is decompo-

sable with respect to this direct integral decomposition of L2(S X G).

Now suppose that L has property P. Then [5, Proposition 4.4.15] there is a

linear mapping P: B(L2(S X G)) -» R (= L') such that

(i) ||P|| < 1, P(I) = I,T > 0 implies P(T) > 0.

(ii) P(T) E C(T), where C(T) is the closed convex hull of {UTU*\U E

U(L)}.

(iii) P(SXTS2) = SXP(T)S2 if Sx, S2 E R.

If / E LX(S X G), we have the multiplication operator Mf E B(L2(S X

G)), and since each element of R is decomposable, we can write P(Mf) =

J®T¡ dp. For / E LX(S X G), write (/• g)(s, h) = f(sg, hg). Then

ÜP(Mf)Üg-i = P(ÜgMfÜg~l) = />(M/g). Thus Üg(f9T{)Üfx = /®7/«, i.e.
fêUgTfUfx = Je7/g. It follows that for each g, UgT{Ufx = Tf* for almost

all s. We also note that since ¡®T{ E L', it follows from the remarks in the

preceding paragraph that for each g, V~XT{V = T¡ a.e.

For/ E LX(S X G), define o(f)(s) = (TfalXe) where x, e L2(G) is the

characteristic function of the identity. Then a: L°°(S X G) —> L°°(S) and this

map has the following properties:

(0H/)IL< ll/IL-
(ii)a(l) = 1.

(iii) If/ > 0, a(/) > 0.

(iv) If A c Sis measurable, a(fxAXG) = o-(/)xV

(v)a(/.g)-a(/).g.

Properties (i)—(iv) follow in a straightforward manner from the properties of

the map P listed above and some elementary properties of direct integrals of

operators. To see (v), note that for each g and almost all s,

°(f-g)(s) = (r/'xlx,) = (ujfuf^lxe)

= (íWír.-'i/r'x.lx.) = (T{gyg-K^\vg-lug-^)

- (TÍXÁX.) - •(/)(*)•

We now demonstrate how the map a can be used to show that S is

amenable. Suppose E, y, and {As} are as in the discussion preceding the

statement of the theorem. Since {(s, As)} is Borel, there is a measurable

function b: S —> Ex* such that b(s) E As for almost all s E S. Define F:

S X G -» £f by F(i, g) = y*(j, g_1)è(ig_1). Then for each 0 E E, (s, g) -*

<ö, F(í, g)> is in L°°(5 X G) (where < , > is the duality of E and £♦), and the

map E^>LX(S), 9 ^> o((9, F(s, g))) is linear with norm < 1. It follows

from [2, p. 582] that there is a measurable function a: S -» £* such that

o«0, F(s, g)»(i) = <0, a(s)) a.e. We claim that a(s) is the required invariant

section.

Lemma. For all essentially bounded and measurable 9: S -* E,
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o((9(s), F(s, g)))(s) = (9 (s), a(s))   a.e.

Proof. Suppose first that 6 is a simple function, i.e. 9 (s) = S^x^X-s)

where {A¡} is a countable partition of S and 9¡ G E. Fixy. Then for almost all

s G Aj, by property (iv) of a,

o((9(s), F(s,g)))(s) = a((9(s), F(s, g))xAjXG) = o«0,, F(s,g))7ÍAj^)

= a««,, F(i, g)))(s) = (9r a(s)) = (9(s), a(s)).

Since y is arbitrary, this lemma holds for simple 9. If 9 is arbitrary, then there

are simple functions 9n with \\9n - 9 \\M -+ 0 by virtue of the separability of E.

Since F(s,g) G Ef, (9n(s), F(s, g))-* (9(s), F(s,g)) in || \\x on S X G,

and by the norm continuity of a,

o((9n(s),F(s,g)))-*o((9(s),F(s,g)))

in L°°(S). Clearly (9„(s), a(s)) -» (9(s), a(s)) a.e., and the lemma follows.

Corollary. Suppose a: S —> Iso(£) is measurable. Then for all 9 G E,

o((9,a(s)*F(s,g)))=(9,a(s)*a(s)).

Proof. This is equivalent to a((a(s)9, F(s, g))) = (a(s)9, a(s)) which

holds by the lemma.

We now show that a(s) is an invariant section. Suppose h G G. Then by

property (v) of a,

o{(9, F(s, g)) ■ h)(s) = (9, a(s)) ■ h = (9, a(sh)).

But the first term of this equation

= a((9,y*(sh,h->g~i)b(sg-])))(s)

= a((9,y*(s,h)-'y*(s,g-i)b(sg-'))Ys)

and by the corollary, since y*(s, h) is the adjoint of an isometric

isomorphism, this = (9, y*(s, /i)_1a(j)>. Since E is separable, it follows [2,

Theorem 8.17.2(c)] that y*(s, h)~la(s) = a(sh) for almost all s, i.e. a(s) is an

invariant section.

Thus, to complete the proof it suffices to show a(s) G As for almost all s.

Let {#,} be a countable dense subset of £, considered as linear functional on

E*. Then the hyperplanes in E* defined by 0, = q, q rational, separate all

compact convex subsets of E* from points in E*. Therefore, it suffices to

show that for all 9 and q, 9(AS) > q implies 9(a(s)) > q for almost all 5.

Given 9 and q, let S0 = {s G S\9(AS) > q). Then S0 is measurable by [7,

Lemma 1.7]. Suppose p(S0) > 0. Then by property (iii) of a,

o((9, F(s, g))xs0xc) > °(<7 • Xs0xc) = <!Xs0-

Thus (9, a(s)) ■ Xs > QXs > so Q(a(s)) > Q f°r almost all 5 G S0. Since 9 and

q are arbitrary, the theorem follows.
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