ON THE VON NEUMANN ALGEBRA OF AN ERGODIC GROUP ACTION¹

ROBERT J. ZIMMER

ABSTRACT. We give a criterion that an ergodic action be amenable in terms of the operator algebra associated to it by the Murray-von Neumann construction.

The notion of an amenable ergodic action of a locally compact group was introduced by the author in [7]. (The reader is cautioned that this is not the same as the notion introduced by Greenleaf in [3]; see [7] for a discussion of this point.) In this note, we give a criterion for an action of a countable discrete group to be amenable in terms of the von Neumann algebra associated to it by the classical Murray-von Neumann construction.

We recall that J. T. Schwartz has introduced the following property of von Neumann algebras [6, p. 168]. If A is a von Neumann algebra on a Hilbert space H, A is said to have property P if for any $T \in B(H)$, the closed (weak operator topology) convex hull of $\{U^*TU|U\in U(A)\}$ contains an element of A', where U(A) is the unitary group of A, and A' is, as usual, the commutant of A. If G is a countable discrete group and R(G) the von Neumann algebra generated by the right regular representation of G, then R(G) has property P is and only if G is amenable [5, Proposition 4.4.21]. More generally, Schwartz shows that if G is amenable and acts ergodically on a Lebesgue space (S, μ) , then $R(S \times G)$, the algebra of the Murray-von Neumann construction (described below) has property P [6, p. 198]. Conversely, if $R(S \times G)$ has property P and μ is finite and G-invariant, then G must be amenable [6, p. 200]. The point of this note is to prove a stronger converse, without the assumption of a finite invariant measure. Namely, we show that if $R(S \times G)$ has property P, then S is an amenable G-space (definition below). The result quoted above in the case of finite invariant measure then follows from [7, Proposition 4.4], which asserts that if S is an amenable G-space with finite invariant measure (or mean), then G itself must be amenable.

We recall the Murray-von Neumann construction. Let S be a standard Borel space, G a countable discrete group with a right Borel action of G on S. We suppose μ is a probability measure on S quasi-invariant and ergodic

Received by the editors August 30, 1976 and, in revised form, February 20, 1977. AMS (MOS) subject classifications (1970). Primary 28A65, 46L10.

¹Research supported by the Naval Academy Research Council.

under G. We let r(s, g) be the Radon-Nikodym cocycle of the action, i.e. a Borel function such that $d\mu(sg) = r(s, g)d\mu(s)$. Let $U_g: L^2(G) \to L^2(G)$ be the right regular representation of G, and define a unitary representation $\tilde{U}_g: L^2(S \times G) \to L^2(S \times G)$ by

$$(\tilde{U}_{g}f)(s,h) = f(sg,hg)r(s,g)^{1/2}.$$

Here $S \times G$ has the product measure of μ with Haar measure. Let V_g be the left regular representation of G on $L^2(G)$ and define $\tilde{V}_g: L^2(S \times G) \to L^2(S \times G)$ by

$$(\tilde{V}_{g}f)(s,h) = f(s,g^{-1}h).$$

If $f \in L^{\infty}(S)$, then f defines a multiplication operator M_f on $L^2(S \times G)$ by $(M_f h)(s, g) = f(s)h(s, g)$ and a multiplication operator N_f by $(N_f h)(s, g) = f(sg)h(s, g)$. We let L be the von Neumann algebra generated by $\{\tilde{V}_g, N_f\}$ and R the von Neumann algebra generated by $\{\tilde{V}_g, M_f\}$. Then R' = L, and there is a unitary involution J on $L^2(S \times G)$ such that JRJ = L [1, pp. 137–138]. Thus R and L are spatially isomorphic and one will have property P if and only if the other does.

The definition of an amenable ergodic action given in [7] is based upon an "invariant section property" and is motivated by the virtual subgroup viewpoint of Mackey. We review the definition. Suppose E is a separable Banach space and $\gamma: S \times G \to \text{Iso}(E)$ is a Borel cocycle, where Iso(E) is the group of isometric isomorphisms of E with the Borel structure of the strong operator topology. Let E_1^* be the unit ball in the dual of E with the $\sigma(E^*, E)$ topology. Then there is an induced adjoint cocycle $\gamma^*: S \times G \to \text{Homeo}(E_1^*)$, $\gamma^*(s,g) = (\gamma(s,g)^*)^{-1}$. A Borel function $\phi \colon S \to E_1^*$ is called an invariant section for γ if for each $g \in G$, $\gamma^*(s, g)\phi(sg) = \phi(s)$ for almost all $s \in S$. Now suppose that for each s, $A_s \subset E_1^*$ is a compact convex set, that $\{(s, x)|x \in A_s\}$ is a Borel subset of $S \times E_1^*$, and that for each $g, \gamma^*(s, g)A_{sg}$ = A_s for almost all s. Then S is called an amenable G space if for each such cocycle γ and each such collection $\{A_s\}$, there is an invariant section ϕ with $\phi(s) \in A_s$ for almost all s. In [7] it is shown that any ergodic action of any amenable group is amenable, but that nonamenable groups can also have amenable actions. For example the range-closure of a cocycle [4] of an amenable action into any locally compact group is amenable [7, Theorem 3.3].

Theorem. If G is a countable discrete group acting ergodically on (S, μ) and the von Neumann algebra R (or equivalently, L) has property P, then S is an amenable G-space. (Here μ is a quasi-invariant probability measure.)

PROOF. If $f \in L^2(S \times G)$, define $f_s(g) = f(sg, g)r(s, g)^{1/2}$. Then $f_s \in L^2(G)$ for almost all s, and a straightforward calculation shows that $f \to \int^{\oplus} f_s d\mu$ is a unitary isomorphism of $L^2(S \times G) \cong \int_s^{\oplus} L^2(G)$. One further readily verifies that under this isomorphism, \tilde{U}_g corresponds to $\int_s^{\oplus} U_g$ and that if $T \in B(L^2(S \times G))$ corresponds to the decomposable operator $\int_s^{\oplus} T_s$ in

 $B(\int_s^{\oplus} L^2(G))$, then T commutes with \tilde{V}_g if and only if for each g, $V_g^{-1}T_sV_g=T_{sg}$ for almost all s. Since the operators \tilde{U}_g and M_f , $f \in L^{\infty}(S)$, correspond to decomposable operators, it follows that every element of R is decomposable with respect to this direct integral decomposition of $L^2(S \times G)$.

Now suppose that L has property P. Then [5, Proposition 4.4.15] there is a linear mapping $P: B(L^2(S \times G)) \to R$ (= L') such that

- (i) $||P|| \le 1$, P(I) = I, $T \ge 0$ implies $P(T) \ge 0$.
- (ii) $P(T) \in C(T)$, where C(T) is the closed convex hull of $\{UTU^* | U \in U(L)\}$.
 - (iii) $P(S_1TS_2) = S_1P(T)S_2$ if $S_1, S_2 \in R$.

If $f \in L^{\infty}(S \times G)$, we have the multiplication operator $M_f \in B(L^2(S \times G))$, and since each element of R is decomposable, we can write $P(M_f) = \int^{\oplus} T_s^f \ d\mu$. For $f \in L^{\infty}(S \times G)$, write $(f \cdot g)(s, h) = f(sg, hg)$. Then $\tilde{U}_g P(M_f) \tilde{U}_g^{-1} = P(\tilde{U}_g M_f \tilde{U}_g^{-1}) = P(M_{fg})$. Thus $\tilde{U}_g (\int^{\oplus} T_s^f) \tilde{U}_g^{-1} = \int^{\oplus} T_s^{fg}$, i.e. $\int^{\oplus} U_g T_s^f U_g^{-1} = \int^{\oplus} T_s^{fg}$. It follows that for each g, $U_g T_s^f U_g^{-1} = T_s^{fg}$ for almost all s. We also note that since $\int^{\oplus} T_s^f \in L'$, it follows from the remarks in the preceding paragraph that for each g, $V_g^{-1} T_s^f V_g = T_{sg}^f$ a.e.

For $f \in L^{\infty}(S \times G)$, define $\sigma(f)(s) = \langle T_s^{f} \chi_e | \chi_e \rangle$ where $\chi_e \in L^2(G)$ is the characteristic function of the identity. Then $\sigma: L^{\infty}(S \times G) \to L^{\infty}(S)$ and this map has the following properties:

- (i) $\|\sigma(f)\|_{\infty} \leq \|f\|_{\infty}$.
- (ii) $\sigma(1) = 1$.
- (iii) If $f \ge 0$, $\sigma(f) \ge 0$.
- (iv) If $A \subset S$ is measurable, $\sigma(f\chi_{A\times G}) = \sigma(f)\chi_A$.
- (v) $\sigma(f \cdot g) = \sigma(f) \cdot g$.

Properties (i)—(iv) follow in a straightforward manner from the properties of the map P listed above and some elementary properties of direct integrals of operators. To see (v), note that for each g and almost all s,

$$\sigma(f \cdot g)(s) = \left\langle T_s^{f \cdot g} \chi_e | \chi_e \right\rangle = \left\langle U_g T_s^f U_g^{-1} \chi_e | \chi_e \right\rangle$$

$$= \left\langle U_g V_g T_{sg}^f V_g^{-1} U_g^{-1} \chi_e | \chi_e \right\rangle = \left\langle T_{sg}^f V_g^{-1} U_g^{-1} \chi_e | V_g^{-1} U_g^{-1} \chi_e \right\rangle$$

$$= \left\langle T_{sg}^f \chi_e | \chi_e \right\rangle = \sigma(f)(sg).$$

We now demonstrate how the map σ can be used to show that S is amenable. Suppose E, γ , and $\{A_s\}$ are as in the discussion preceding the statement of the theorem. Since $\{(s,A_s)\}$ is Borel, there is a measurable function $b\colon S\to E_1^*$ such that $b(s)\in A_s$ for almost all $s\in S$. Define $F\colon S\times G\to E_1^*$ by $F(s,g)=\gamma^*(s,g^{-1})b(sg^{-1})$. Then for each $\theta\in E$, $(s,g)\to \langle \theta,F(s,g)\rangle$ is in $L^\infty(S\times G)$ (where $\langle\ ,\ \rangle$ is the duality of E and E^*), and the map $E\to L^\infty(S),\ \theta\to\sigma(\langle\theta,F(s,g)\rangle)$ is linear with norm $\leqslant 1$. It follows from $[2,\ p.\ 582]$ that there is a measurable function $a\colon S\to E_1^*$ such that $\sigma(\langle\theta,F(s,g)\rangle)(s)=\langle\theta,a(s)\rangle$ a.e. We claim that a(s) is the required invariant section.

$$\sigma(\langle \theta(s), F(s, g) \rangle)(s) = \langle \theta(s), a(s) \rangle$$
 a.e.

PROOF. Suppose first that θ is a simple function, i.e. $\theta(s) = \sum_{i=1}^{\infty} \theta_i \chi_{A_i}(s)$ where $\{A_i\}$ is a countable partition of S and $\theta_i \in E$. Fix j. Then for almost all $s \in A_i$, by property (iv) of σ ,

$$\sigma(\langle \theta(s), F(s,g) \rangle)(s) = \sigma(\langle \theta(s), F(s,g) \rangle \chi_{A_j \times G}) = \sigma(\langle \theta_j, F(s,g) \rangle \chi_{A_j \times G})$$
$$= \sigma(\langle \theta_j, F(s,g) \rangle)(s) = \langle \theta_j, a(s) \rangle = \langle \theta(s), a(s) \rangle.$$

Since f is arbitrary, this lemma holds for simple θ . If θ is arbitrary, then there are simple functions θ_n with $\|\theta_n - \theta\|_{\infty} \to 0$ by virtue of the separability of E. Since $F(s, g) \in E_1^*$, $\langle \theta_n(s), F(s, g) \rangle \to \langle \theta(s), F(s, g) \rangle$ in $\| \|_{\infty}$ on $S \times G$, and by the norm continuity of σ ,

$$\sigma(\langle \theta_n(s), F(s,g) \rangle) \rightarrow \sigma(\langle \theta(s), F(s,g) \rangle)$$

in $L^{\infty}(S)$. Clearly $\langle \theta_n(s), a(s) \rangle \rightarrow \langle \theta(s), a(s) \rangle$ a.e., and the lemma follows.

COROLLARY. Suppose $\alpha: S \to \text{Iso}(E)$ is measurable. Then for all $\theta \in E$,

$$\sigma(\langle \theta, \alpha(s)^*F(s,g)\rangle) = \langle \theta, \alpha(s)^*a(s)\rangle.$$

PROOF. This is equivalent to $\sigma(\langle \alpha(s)\theta, F(s, g)\rangle) = \langle \alpha(s)\theta, a(s)\rangle$ which holds by the lemma.

We now show that a(s) is an invariant section. Suppose $h \in G$. Then by property (v) of σ ,

$$\sigma(\langle \theta, F(s,g) \rangle \cdot h)(s) = \langle \theta, a(s) \rangle \cdot h = \langle \theta, a(sh) \rangle.$$

But the first term of this equation

$$= \sigma \left(\left\langle \theta, \gamma^*(sh, h^{-1}g^{-1})b(sg^{-1}) \right\rangle \right) (s)$$

$$= \sigma \left(\left\langle \theta, \gamma^*(s, h)^{-1}\gamma^*(s, g^{-1})b(sg^{-1}) \right\rangle \right) (s)$$

and by the corollary, since $\gamma^*(s, h)$ is the adjoint of an isometric isomorphism, this = $\langle \theta, \gamma^*(s, h)^{-1}a(s) \rangle$. Since E is separable, it follows [2, Theorem 8.17.2(c)] that $\gamma^*(s, h)^{-1}a(s) = a(sh)$ for almost all s, i.e. a(s) is an invariant section.

Thus, to complete the proof it suffices to show $a(s) \in A_s$ for almost all s. Let $\{\theta_i\}$ be a countable dense subset of E, considered as linear functionals on E^* . Then the hyperplanes in E^* defined by $\theta_i = q$, q rational, separate all compact convex subsets of E_1^* from points in E_1^* . Therefore, it suffices to show that for all θ and q, $\theta(A_s) \ge q$ implies $\theta(a(s)) \ge q$ for almost all s. Given θ and q, let $S_0 = \{s \in S | \theta(A_s) \ge q\}$. Then S_0 is measurable by [7, Lemma 1.7]. Suppose $\mu(S_0) > 0$. Then by property (iii) of σ ,

$$\sigma(\langle \theta, F(s,g) \rangle \chi_{S_0 \times G}) \geq \sigma(q \cdot \chi_{S_0 \times G}) = q \chi_{S_0}$$

Thus $\langle \theta, a(s) \rangle \cdot \chi_{S_0} \ge q \chi_{S_0}$, so $\theta(a(s)) \ge q$ for almost all $s \in S_0$. Since θ and q are arbitrary, the theorem follows.

REFERENCES

- 1. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969.
- 2. R. E. Edwards, Functional analysis, Holt, Rinehart and Winston, New York, 1965.
- 3. F. P. Greenleaf, Amenable actions of locally compact groups, J. Functional Anal. 4 (1969), 295-315.
 - 4. G. W. Mackey, Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187-207.
 - 5. S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, New York, 1971.
 - 6. J. T. Schwartz, W*-algebras, Gordon and Breach, New York, 1967.
- 7. R. J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis (to appear).

DEPARTMENT OF MATHEMATICS, U. S. NAVAL ACADEMY, ANNAPOLIS, MARYLAND 21402

Current address: Department of Mathematics, University of Chicago, Chicago, Illinois 60637