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AN ABELIAN THEOREM FOR A CLASS

OF SUBHARMONIC FUNCTIONS

faruk f. abi-khuzam

Abstract. We show that if the Riesz-mass of a subharmonic function u, of

finite order X, is distributed along a ray, then regular variation (with

exponent X) of the mean value of uÇre") implies regular variation (with

exponent X) of each of the Ls(~ it, it) means of u^e*). This result extends a

known theorem of Edrei and Fuchs, but our method differs from theirs. In

particular, for the case of integral orders we obtain the theorem for a much

more general distribution of the Riesz-mass. A corollary, which appears to

be new, on the deficiency of the value zero of entire functions with positive

integral order, follows.

Let/be an entire function with real negative zeros and nonintegral order A.

Let n(t) = n(t, 0) be the number of zeros of/in |z| < t and put

(1) N(r) = N(r, 0) = f/!(/)/"' dt       (/(0) * 0).
•'o

Edrei and Fuchs [1, p. 340] have shown that the condition

(2) N(r)~rxL(r)       (r^ oo, 0 < X < 1)

implies

T(r) ~ ^(r)   if 0 < X < i,
(3)

~ (csc ftXyL(r)   if \ < X < 1.

Here

T(r) = T(r,f) = ¿  £ loè+\f(rei9)\ dB

is the Nevanlinna characteristic of/, and L is a slowly varying function, i.e. L

is positive and satisfies

L(ar)
(4) lim   ~-r = 1

r-»00    L(r)

for every a > 0.

In this note we obtain an analogue of the above result of Edrei and Fuchs

in which:

(i) log|/| is replaced by (a) a subharmonic function u whose Riesz mass is
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distributed along the negative x-axis, and whose order X is finite and

nonintegral, or (b) a subharmonic function u whose order X is a positive

integer and whose Riesz mass is concentrated in the set D(r¡, <p) = U*_o{z:

|arg z — v - 2irj/X\ < t/} for some <p G [0; 2t7) and tj G [0, m/2X).

(ii) T(r) is replaced by any ms(r, u) where

(5) ms(r, u) = 1(277)"'J"  \u(rei9)\S d.9 (1 < í < oo).

As a corollary, we obtain a result about the deficiency of the value zero of a

class of entire functions with positive integral order; in addition, our proof

may be of interest because of its simplicity.

Let « be a function subharmonic in the plane and harmonic in a

neighbourhood of the origin. Put u+ = max(u, 0) and assume for

convenience that «(0) = 0. The characteristic of u is defined by

T(r) = T(r, u) = (277)"' [' u+(rei9) dB,
J -IT

and the order X of u is defined by

log T(r)
(6) X = lim sup  —:-.

r^co logr

The customary way of defining N is to let n(t) = n(t, u) = f\a\<r dp(a),

where ¡i is the positive mass-distribution associated to u via the Riesz

Decomposition Theorem, and then to put A^(r) = N(r, u) = /ó/i(f)r_1 à.t. If

u is harmonic in a neighbourhood of the origin with u(0) = 0 then

fr0n(t)t~l dt exists and

(7) N(r) = N(r, u) = (2t7)_1 T u(reie) d9.

For X a positive integer, let \px(9) = cos Xf?. For nonintegral X let \px(9) =

trX csc 77X cos X9 and let ms(\px) be the L,( —77,77) norm of \px. We are now

ready to state our result:

Theorem. Let u be a function subharmonic in the plane, having finite order X

with u(z) = ReS"= 1 amzm for z near zero and q = [X]. Assume that as r -» 00

(8) N(r) = N(r,u)~rxL(r),

where L is a slowly varying function.

(I) // the order X of u is not an integer and if the Riesz mass of u is

distributed along the negative x-axis. then

ms(r, u) ~ ms(tx)rxL(r) (I < s < oc),

ms(r, u + ) ~ m,{^yL(r)     (K s < 00).
(9)

(II) Put

(10) •(') = «, + -;   f      a-<dii(a).
"     J\a\<r
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// the order Xofu is a positive integer and if the Riesz mass of u is concentrated

in a set

\

(11) Z)(T,,<p)=U   {z:\axgz-q>-2vj/\\<it}
7=0

for some <p £ [0, 2ft) and tj £ [0, ft/2X), then \c(r)\ is a slowly varying function

and

(12) ms(r, M + )~imí(/-,M)~>í(^y«|c(/-)|        (K s < oo).

Proof of (I). Denote by {ym(r)} the Fourier coefficients of u, i.e.

ym(r) = (2*)-' f u(reie)e~ime dB.
J -it

If q = [X] and m > <7 + 1, then by the analogue of Hadamard's Theorem for

subharmonic functions of finite order, we have, as in [3, p. 380],

(.3)(-i)"r>)-^)-f {/;(if*e>? *f (í)"*«í ■)•
Similarly, when # 7*= 0 and 1 < m < <? we have

(i4) (-D--Í.W-1v- + i*"JCr{(5)"-(;)"'}^(0 f +^W

Clearly, 7_m(r) = Ym(r) (m > 0) and y0(r) = N(r) by (7).

(8) implies [2, p. 273]

(15) —->m+X+l        (m + X + 1 > 0, r -» 00)

(' tmN(t)dt
•'o

and

/•m+'#(/•)

(16) -->|m + A + II        (m + X + 1 < 0, r -> 00).

f°°tmN(t)dt

Furthermore, since L is slowly varying r aL(r)^>0 for every a > 0. In

particular, since q = [X] and N(r) ~ rxL(r),

(17) /•"■ = (>(#(/•))        (1 < m < 9, 9 * 0, r-» 00).

Using (15), (16) and (17) in (13) and (14), a straightforward computation gives

(18) ym(r)/N(r)^(-l)mX2/(X2-m2)       (r-> 00, all «).

Suppose now that 1 < s < 2. Using the fact that the L^-norm is a nonde-

creasing function of s together with Parseval's identity and the identity

»    (-lfX2     _
ftX csc ftX cos X9= V    \ eimB,

-x   X2-m2

we have, in view of (18),
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lim
r—»oo (277)- >/J — m

u(re'9)

~Ñ(r)
-M»)

l/s

09) < lim
r—»oo

m= — oo

"H2
ym(r)    (-i)-x

AT(r)   '    > m-

1/2

lim
r—>oo

y.(/-)   (-in2
N(r)   " ) m

1/2

= 0,

provided that the passage to the limit inside the summation is justified. This is

done below, after our discussion of Case (II).

Now the first formula of (9) follows from (19) by Minkowski's inequality.

The second formula of (9) follows from f\u + /N - \h + \s < }\U/N - \px\\

(19) and Minkowski's inequality.

If 2 < í < oo, we let s' be the index conjugate to s, i.e., (l/s + l/s' = 1),

and apply the Hausdorff-Young Theorem. This gives an inequality analogous

to (19) except that the /2-norm on the right-hand side of (19) will be replaced

by the 4-norm, and then (9) follows as in the case 1 < s < 2.

Proof of (II). In what follows we denote by (cm(r)} the Fourier

coefficients of u, and we define ym(r) for m > q + 1 by (13) and (if q > 1)

for 1 < m < q by (14) with am replaced by \am\. Then we have

(20) MOI < ym(r)-

Suppose now that 1 < s < 2. Proceeding as in the Proof of I and using (20)

we obtain

lim {
r—»oo

(277)-1 r
J — I

u(reie) - (c(r)eiqe + c(r)e-iq9)2-xr''

N(r)

(21)

\/s

lim
r—»oo

\m\*q

y m (r)
+ 2

cq(r) - (r"/2)c(r)
1/2

<  00.
N(r) I N(r)

I claim that (8) and (11) imply that

(22) r-"N(r) = o(\c(r)\)    asr^oo.

Let us assume (22). Noting that (22) implies that c(r) ^ 0 for large r, and

denoting by 6(r) one of the determinations of the argument of c(r), we have

from (22) and (21),



(23) lim \
r—»oo

city1 r
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u(rew)

r"\c(r)\
-cos q(9 + @(r))

l/s
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= 0

(1 < S < 2)

from which (12) follows for 1 < s < 2.

The case 2 < s < oo is dealt with in exactly the same fashion as in (I).

Before proving (22) we show that it implies that |c(r)| is a slowly varying

function: Let a > 1 be fixed. We have

(24)

\c(ar) - c(r)\ = / Z-'d^Z) = o(\q-> T r< dn(t)\
Jr<\Z\<ar \l ^ /

= 0(r-"n(ar)) = 0(r~"N(2ar)) = 0(r-"N(r)) = o(\c(r)\),

the constants implied in the 0-notation depending on q and a only. This

shows that \c(r)\ is a slowly varying function.

We now prove (22) and for this purpose we distinguish two cases:

(A)     f°° t-"-lN(t)dt< oo    and   (B)     f°° t-"'lN(t) dt= oo.
•'o •'o

If (A) holds, then

(25)

r-"N(r)^0,    r-"n(r)^0,   r~"N(r)/ f°° /"«-'#(>) dt->0,
J r

r-"n(r)/ j™ t-«-xn(t)dt^Q   asr^oo.

The third implication is (16) with m + X + 1 = 0. It is true [2, p. 237] by (8)

and (A). The fourth implication follows from the third since n(r) — XN(r).

(A) also implies that qaq = — f\a\<aoa~q dp(a) and so c(r) =

— q~x \\a\->ra" dp(a). Using this with (11) we obtain

\c(r)\ =\c(r)e^\-

>

(26)

q-lf      (ae-^y" dp(a)
J\a\>r

q~x cos Xr/f    t~q dn(t)

= «T1 cosXr¡¡-r-"n(r) - qr~m(r) + q2 f°° t~"-lN(t) dt

= ocosXr;  f°° i"«-1 N(t)dt{l - o(l)}.

Now (26) and (25)(iii) give (22).

If (B) holds, then

Re(a(Vw) + q cos Xtj  f r«""1 N(t) dt~ q cos Xrj f r"'1 N(t)dt,

and so, in view of (11), we have
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\c(r)\ > Re(aie'w) + q cos Xtj f r~í_l N(t) dt

(27)
~ q cosXt/ C t~q'xN(t)dt,

Jo

which, when combined with (15), gives (22).

It thus remains to justify the finiteness statement in (21) and the passage to

the limit under the summation in the "/2-norm" in (19) and in the "/y-norm"

when s' > 1. This is a consequence of the following.

Lemma. // N(r) ~ r^L^), then there exist absolute constants K and rQ such

that

(28) \ym(r)\/N(r) < K\m\~x        (r > r0, m > q + l,q =[X}).

Proof. Choose tj > 0 such that 1 + tj < 2?+1_A (possible since X < q +

1), and then determine rx (by (4)) so that L(2r)/L(r) < 1 + r\(r > rx). From

this and condition (8) on N (r) we infer the existence of a number r2 such that

(29) N(2r)/N(r) < 2X(1 + tj)   for r > r2.

From N(r) = fr0 n(t)t~l dt we have

(30) N(2r) > f r n(t)t~x dt> n(r)log 2

since n(t) is nondecreasing. An integration by parts in (13) followed by use of

(30) and (29) and some trivial estimates gives

(31) \ym(r)\ < rm(2 log 2)'1   C /—"' N(t) dt.
Jr

Following Rubel [4, p. 440] we have, from (31),

|yM(r)| <(21og2)-V"f  N(2k+2r) (*  '' rm~x dt
k = 0 J2kr

<(21og2)-'(2A(l + i,))2m-lN(r)  f   (2"m2x(l + i,))*
*=o

= Km~xN(r)

(m > q, r > r0 — max(r„ r2)). This establishes the lemma.

Since s' > I, the lemma shows that ^\m\>q\ym(r)/N(r)\s' is uniformly

convergent for r > rQ and thus the passage to the limit under the summation

sign in (19) is justified. This also shows that the sum on the right-hand side of

(21) is finite provided that (cq(r) - 2~xrqc(r)) = 0(N(r)); but this follows

from

\cq(r) - 2-xr"c(r)\ < (2q)~x [r~H" dn(t) < (2qyxn(r)

(32) °
<(2qlog2)-xN(2r)= 0(N(r)).

Corollary. Let f be an entire function with positive integral order X. If the

zeros of f belong to some set D(t], qp) defined by (11) and satisfy (8), then the
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deficiency of the value 0 is 1 and so, f has 0 and oo as the only deficient values.

Proof. Put u = log|/(z)|; then by (12) with s = I, T(r, u)

~±mx(\bx)r''\c(r)\, which, with (22), gives N(r) = o(T(r)), and the result

follows.

We note the example F(z) = cos(zA), X a positive integer, which shows that

the condition tj < 77/2X is sharp, since, for this F, 0 is not a deficient value.
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