EQUIVALENCES GENERATED BY FAMILIES OF BOREL SETS

JOHN P. BURGESS¹

ABSTRACT. The equivalence relation on the reals generated by a family of \aleph_a Borel sets has either $< \aleph_a$ or else exactly 2^{\aleph_0} equivalence classes.

As is usual in modern set theory, we identify an ordinal with the set of its predecessors, and a cardinal with the first ordinal of that cardinality. Thus $2 = \{0, 1\}, \ \omega = \{0, 1, 2, \dots\};$ while $\aleph_0 = \omega, \ \aleph_1 =$ the first uncountable ordinal ω_1 , etc. If α, β are ordinals,

$${}^{\beta}\alpha = \{ f: f \text{ is a function & dom } f = \beta \text{ & range } f \subseteq \alpha \};$$

while

$$\beta \alpha = \bigcup_{\gamma < \beta} {}^{\gamma} \alpha.$$

If $f \in {}^{\beta}\alpha$ and $\gamma < \beta$, then $f|\gamma$ is the restriction of f to γ ; while if $\delta < \alpha$, $f * \delta$ is the element g of $(\beta + 1)\alpha$ with $g|\beta = f$ and $g(\beta) = \delta$.

Let X be an uncountable Polish space (separable topological space admitting a complete metric), e.g. the reals. A family S of subsets of X generates an equivalence relation E(S) on X defined by

$$xE(S)y \leftrightarrow \forall S \in S(x \in S \leftrightarrow y \in S).$$

Let κ be an infinite cardinal. A subset $S \subseteq X$ is called κ -Souslin if S can be represented in the form

$$S = \bigcup_{f \in {}^{\omega_{\kappa}}} \bigcap_{n \in \omega} C_{f|n},$$

where for each $s \in {}^{\omega}\kappa$, $C_s \subseteq X$ is closed. S is $co-\kappa$ -Souslin if X - S is κ -Souslin, and $bi-\kappa$ -Souslin if both κ -Souslin and $co-\kappa$ -Souslin. Thus the ω -Souslin sets are just the analytic (Σ_1^1) sets; the $co-\omega$ -Souslin sets are the $CA(\Pi_1^1)$ sets; and by a classical theorem of Souslin (see [3]) the $bi-\omega$ -Souslin sets are the Borel sets.

An equivalence relation E on X is said to have *perfectly many classes* if there is a perfect (closed, dense-in-itself) $P \subseteq X$ such that no two (distinct) elements of P are E-equivalent. Since any perfect subset of X has cardinality 2^{\aleph_0} , this implies E has 2^{\aleph_0} classes. Note that if S, \mathfrak{T} are families of subsets of

Received by the editors March 25, 1977.

AMS (MOS) subject classifications (1970). Primary 04A15.

¹Research supported in part by the National Science Foundation MCS76-10224.

X with $\mathfrak{T} \subseteq \mathfrak{S}$, then $E(\mathfrak{S}) \subseteq E(\mathfrak{T})$ (as subsets of X^2), and, hence, the number of $E(\mathfrak{S})$ classes can be no less than the number of $E(\mathfrak{T})$ classes, and the former has perfectly many classes if the latter does.

THEOREM. Let X be an uncountable Polish space, κ an infinite cardinal, S a family of κ many bi- κ -Souslin subsets of X. Then if the equivalence relation E(S) generated by S has more than κ equivalence classes, there exists a countable $T \subseteq S$ such that E(T) has perfectly many classes.

PROOF. Fix a complete metric ρ on X compatible with its topology. Enumerate $S = \{S^{\alpha}: \alpha < \kappa\}$. For each $\alpha < \kappa$ fix families ${}^{i}C_{s}^{\alpha}$ of closed subsets of X for i = 0, 1 and $s \in {}^{\omega}\kappa$, such that:

$$S^{\alpha} = \bigcup_{f \in {}^{\omega}\kappa} \bigcap_{n \in \omega} {}^{0}C^{\alpha}_{f|n}, \quad X - S^{\alpha} = \bigcup_{f \in {}^{\omega}\kappa} \bigcap_{n \in \omega} {}^{1}C^{\alpha}_{f|n}.$$

We may choose these families to be nested, so $s \subseteq t$ implies ${}^{i}C_{t}^{\alpha} \subseteq {}^{i}C_{s}^{\alpha}$; and we may choose them so that for $n \in \omega$ and $s \in {}^{n}\kappa$, the ρ -diameter of ${}^{i}C_{s}^{\alpha}$ is less than 2^{-n} . For $\alpha < \kappa$, i = 0, 1, and $s \in {}^{\omega}\kappa$, set

$${}^{i}S_{s}^{\alpha} = \bigcup_{\substack{f \in {}^{\omega}_{K} \\ s \subseteq f}} \bigcap_{n \in \omega} {}^{i}C_{f|n}^{\alpha} \subseteq {}^{i}C_{s}^{\alpha}.$$

Assume E(S) has $> \kappa$ classes, and let $Z \subseteq X$ be a set of κ^+ pairwise E(S)-inequivalent elements.

We will define for every $l \in \omega$, $\sigma \in {}^{l}2$, an ordinal $\alpha(\sigma) < \kappa$ and elements $s(\sigma, k)$ of ${}^{l}\kappa$ for $k \le l$, so that setting

(1)
$$T_{\sigma} = \bigcap_{k < l} {}^{\sigma(k)} S_{s(\sigma,k)}^{\alpha(\sigma|k)} \subseteq \bigcap_{k < l} {}^{\sigma(k)} C_{s(\sigma,k)}^{\alpha(\sigma|k)},$$

we have $\operatorname{card}(Z \cap T_{\sigma}) = \kappa^{+}$. We will also arrange matters so that $\sigma \subseteq \tau$ implies $s(\sigma, k) \subseteq s(\tau, k)$ for all relevant k. We proceed by induction. Suppose then that $l \in \omega$, $\sigma \in {}^{l}2$, and suppose that for all k < l, $\alpha(\sigma|k)$ and $s(\sigma, k)$ have been defined and satisfy the conditions above.

In particular, $\operatorname{card}(Z \cap T_{\sigma}) = \kappa^{+}$. We claim this assumption implies that there exists an $\alpha < \kappa$ such that both $Z \cap T_{\sigma} \cap S^{\alpha}$ and $(Z \cap T_{\sigma}) - S^{\alpha}$ have cardinality κ^{+} . For suppose the opposite, and setting, for each $\alpha < \kappa$, M^{α} = whichever of $Z \cap T_{\sigma} \cap S^{\alpha}$ or $(Z \cap T_{\sigma}) - S^{\alpha}$ has cardinality $\leq \kappa$, we would find that all elements of $Z - \bigcup_{\alpha < \kappa} M^{\alpha}$ would be $E(\S)$ -equivalent, hence that there could be only one such element, hence that $\operatorname{card} Z = \kappa$, a contradiction! Let $\alpha(\sigma)$ be the least α with $\operatorname{card}(Z \cap T_{\sigma} \cap S^{\alpha}) = \operatorname{card}((Z \cap T_{\sigma}) - S^{\alpha}) = \kappa^{+}$. Now $Z \cap T_{\sigma} \cap S^{\alpha(\sigma)}$ is contained in

$$\bigcap_{k < l} {}^{\sigma(k)}S^{\alpha(\sigma|k)}_{s(\sigma,k)} \cap S^{\alpha(\sigma)} = \bigcap_{k < l} \bigcup_{\nu < \kappa} {}^{\sigma(k)}S^{\alpha(\sigma|k)}_{s(\sigma,k)*\nu} \cap \bigcup_{s \in {}^{(l+1)}_{\kappa}} {}^{0}S^{\alpha(\sigma)}_{s}.$$

So there exist ν_0 , ν_1 , ..., $\nu_{(l-1)}$ and s such that setting $s(\sigma * 0, k) = s(\sigma, k) * \nu_k$ for k < l, and $s(\sigma * 0, l) = s$, and defining $T_{\sigma * 0}$ as per(1) above,

we still have $\operatorname{card}(Z \cap T_{\sigma \cdot 0}) = \kappa^+$. The $s(\sigma \cdot 1, k)$ for $k \leq l$ are similarly defined.

For $g \in {}^{\omega}\omega$, $\{\overline{T}_{g|n}: n \in \omega\}$ forms a nested sequence of nonempty closed sets with ρ -diameters converging to 0. Hence this family intersects in a point $x_g \in X$. If g(m) = 0, then x_g belongs to

$$\bigcap_{n>m} {}^{0}C_{s(g|n,m)}^{\alpha(g|m)} \subseteq S^{\alpha(g|m)}.$$

Similarly, if g(m) = 1, then $x_g \notin S^{\alpha(g|m)}$. Thus if g, h are two (distinct) elements of ${}^{\omega}\omega$, x_g , x_h are $E(\mathfrak{S})$ -inequivalent, and incidentally $x_g \neq x_h$. Thus $A = \bigcup_{g \in {}^{\omega}\omega} \bigcap_{n \in \omega} T_{g|n} = \{x_g \colon g \in {}^{\omega}\omega\}$ is an uncountable analytic set, and hence contains a perfect subset P. Moreover, setting $\mathfrak{T} = \{S^{\alpha(\sigma)} \colon \sigma \in {}^{\omega}2\}$, any two elements of P are $E(\mathfrak{T})$ -inequivalent, proving the theorem. \square

COROLLARY 1. Let X be a Polish space, κ an infinite cardinal. Then any equivalence relation on X which is an intersection of κ CA equivalences has either $\leq \kappa$ or else perfectly many equivalence classes.

PROOF. We use a deep theorem of Silver [4]: Any $CA(\Pi_1^1)$ equivalence relation on a Polish space X has either countably many or else perfectly many equivalence classes. Now let E be an equivalence on a Polish space X of form $\bigcap_{\alpha<\kappa}E_{\alpha}$ where the E_{α} are CA equivalences. If any E_{α} has perfectly many classes, so does E. If each E_{α} has only countably many classes $\{S_{\alpha,n}: n < N_{\alpha}\}$, $N_{\alpha} \le \omega$, then each of these $S_{\alpha,n}$ is both CA (since E_{α} is CA) and analytic (being the complement of $\bigcup_{m\neq n}S_{\alpha,m}$) and hence is Borel. Thus in this case E = E(S) where $S = \{S_{\alpha,n}: \alpha < \kappa, n < N_{\alpha}\}$ is a family of κ Borel sets. Thus any intersection of κ CA equivalences either has perfectly many classes or else is generated by a family of κ Borel sets. Corollary 1 is immediate. This corollary answers a question of J. Steel. \Box

The referee has informed us that V. Harnik and M. Makkai [5] have obtained Corollary 1 (for X = Baire space) by a model-theoretic argument. The Theorem has somewhat more scope than this corollary, implying e.g. that if S is a family of \aleph_1 analytic sets, E(S) has $S = \aleph_1$ or perfectly many classes.

COROLLARY 2. Any analytic equivalence relation on a Polish space X has either $\leq \omega_1$ or else perfectly many classes.

PROOF. Elsewhere [2] we have shown: Any analytic equivalence relation on a Polish space X is an intersection of ω_1 Borel equivalences. Corollary 2 is then immediate. Actually in [2] we establish more: A $CPCA(\Pi_2^1)$ equivalence of the special form $xEy \leftrightarrow \forall z \in X(x,y,z) \in D$, where $D \subseteq X^3$ is analytic, and for each fixed z, $\{(x,y): (x,y,z) \in D\}$ is an equivalence relation, is an intersection of ω_1 CA equivalences. So the cardinal estimates on the number of classes in Corollary 2 apply to such special CPCA equivalences, too. Corollary 2 was the main result of our thesis [1]. It answers a question of H. Friedman. \square

BIBLIOGRAPHY

- 1. J. P. Burgess, Infinitary languages and descriptive set theory, Doctoral Dissertation, Univ. of California, Berkeley, Calif., 1974.
 - 2. _____, A reflection phenomenon in descriptive set theory, Fund. Math. (to appear).
 - 3. K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966.
 - 4. J. H. Silver, Π_1^1 equivalence relations (to appear).
- 5. V. Harnik and M. Makkai, A tree argument in infinitary model theory, Proc. Amer. Math. Soc. 67 (1977), 309-314.

DEPARTMENT OF PHILOSOPHY, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540