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EQUIVALENCES GENERATED BY FAMILIES

OF BOREL SETS

JOHN P. BURGESS1

Abstract. The equivalence relation on the reals generated by a family of

Ha Borel sets has either < Na or else exactly 2"° equivalence classes.

As is usual in modern set theory, we identify an ordinal with the set of its

predecessors, and a cardinal with the first ordinal of that cardinality. Thus

2 = {0, 1}, to = (0, 1, 2, . . . }; while N0 = to, N, = the first uncountable

ordinal to,, etc. If a, ß are ordinals,

ßa = {/: fis a function & dorn/ = ß & range/ E a);

while

Sa = U   ya.
y<ß

lffEßa and y < ß, then/| y is the restriction of / to y; while if 8 < a,f * 8

is the element g of (ß+X)a with g\ß = / and g( ß) = 8.

Let X be an uncountable Polish space (separable topological space admit-

ting a complete metric), e.g. the reals. A family § of subsets of X generates

an equivalence relation E (S ) on X defined by

xEi§)y++VS E §(x E S<^y E S).

Let k be an infinite cardinal. A subset S E X is called K-Souslin if S can be

represented in the form

s = u n cñn,
/£ "k new

where for each s E -k, Cs E X is closed. S is co-K-Souslin if X — S is

K-Souslin, and bi-K-Souslin if both K-Souslin and co-ic-Souslin. Thus the

co-Souslin sets are just the analytic ÇL\) sets; the co-co-Souslin sets are the

G4(nj) sets; and by a classical theorem of Souslin (see [3]) the bi-co-Souslin

sets are the Borel sets.

An equivalence relation E on X is said to have perfectly many classes if

there is a perfect (closed, dense-in-itself) P EX such that no two (distinct)

elements of P are F-equivalent. Since any perfect subset of X has cardinality

2"°, this implies E has 2"° classes. Note that if S, 9" are families of subsets of
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X with ÎÇS, then E(%) E E0) (as subsets of A2), and, hence, the

number of £(§) classes can be no less than the number of E(9") classes, and

the former has perfectly many classes if the latter does.

Theorem. Let X be an uncountable Polish space, k an infinite cardinal, § a

family of k many bi-K-Souslin subsets of X. Then if the equivalence relation

£(§>) generated by S has more than k equivalence classes, there exists a

countable 9" E § such that E (5") has perfectly many classes.

Proof. Fix a complete metric p on X compatible with its topology.

Enumerate § =(5a: a < k}. For each a < k fix families 'C" of closed

subsets of X for / = 0, 1 and s G -k, such that:

5-= u n °cfi„, x-s°= u n lCfln-

We may choose these families to be nested, so s E t implies 'C" E 'C"; and

we may choose them so that for « G co and j G"k, the p-diameter of 'C" is

less than 2~". For a < k, i = 0, 1, and í G -k, set

T= U   PI 'cfalnE'cs°.

sQf

Assume E(S) has > k classes, and let Z E X be a set of k+  pairwise

E(S )-inequivalent elements.

We will define for every / G to, a G '2, an ordinal a(o) < k and elements

s(o, k) of 'k for k < I, so that setting

(d t. = h oU>5ä q n "«cä> ,
yfe</ *</

we have card(Z n Ta) = k + . We will also arrange matters so that o Et

implies s(o, k) E s(t, k) for all relevant k. We proceed by induction. Suppose

then that / G to, o G '2, and suppose that for all k < I, a(o\k) and s(o, k)

have been defined and satisfy the conditions above.

In particular, card(Z n Ta) = k +. We claim this assumption implies that

there exists an a < k such that both Z n Ta n 5" and (Zn Ta) — S" have

cardinality k +. For suppose the opposite, and setting, for each a < k,

M" = whichever of Z n Ta n 5a or (Z n T„) - Sa has cardinality < k, we

would find that all elements of Z - Ua<KMa would be E(S )-equivalent,

hence that there could be only one such element, hence that card Z = k, a

contradiction! Let a(o) be the least a with card(Z n^n 5") = card((Z n

T„) - Sa)= k + . Now Z n Tn n Sa(o) is contained in

D '(i,^î,nsaW=n  U "'^Ä* n   (J    °5?w.
*</ k<l   v<k se (/+|)

So there exist »<0, r,, . . . , v(!_,, and 5 such that setting s(o * 0, k) =

s(o, k) * vk for k < I, and s(o * 0, /) = s, and defining T0  0 as per (1) above,



EQUIVALENCES GENERATED BY FAMILIES OF BOREL SETS 325

we still have card(Z n T„ <0) = k + . The 5(0 * 1, k) for k < I are similarly

defined.

For g E "co, {Tg\n: n E to} forms a nested sequence of nonempty closed

sets with p-diameters converging to 0. Hence this family intersects in a point

xg E X. If gim) = 0, then xg belongs to

H   °r?(?|m\ r <fa(«lm)
I    I      Li(g|n,m) <= «j

n>m

Similarly, if gim) = 1, then xg £ 5a<«lm>. Thus if g, h are two (distinct)

elements of "co, xg, xh are E (S )-inequivalent, and incidentally x ^ xA. Thus

A = Uge"U D neo>Tg\n = {-V £ £ "«} is an uncountable analytic set, and

hence contains a perfect subset P. Moreover, setting 9" = {Sa(a): a E -2),

any two elements of P are E (9")-inequivalent, proving the theorem.   □

Corollary 1. Let X be a Polish space, k an infinite cardinal. Then any

equivalence relation on X which is an intersection of k CA equivalences has

either < k or else perfectly many equivalence classes.

Proof. We use a deep theorem of Silver [4]: Any CA (Jl\) equivalence

relation on a Polish space X has either countably many or else perfectly many

equivalence classes. Now let E be an equivalence on a Polish space X of form

C\a<KEa where the Ea are CA equivalences. If any Ea has perfectly many

classes, so does E. If each Ea has only countably many classes {San:

n < Na), Na < co, then each of these Sa„ is both CA (since Ea is CA) and

analytic (being the complement of Um^„Sam) and hence is Borel. Thus in

this case E = £(S) where § = {San: a < k, n < Na) is a family of k Borel

sets. Thus any intersection of k CA equivalences either has perfectly many

classes or else is generated by a family of k Borel sets. Corollary 1 is

immediate. This corollary answers a question of J. Steel.   □

The referee has informed us that V. Harnik and M. Makkai [5] have

obtained Corollary 1 (for X = Baire space) by a model-theoretic argument.

The Theorem has somewhat more scope than this corollary, implying e.g. that

if S is a family of N, analytic sets, £(§ ) has < Hx or perfectly many classes.

Corollary 2. Any analytic equivalence relation on a Polish space X has

either < wxor else perfectly many classes.

Proof. Elsewhere [2] we have shown: Any analytic equivalence relation on a

Polish space X is an intersection of co, Borel equivalences. Corollary 2 is then

immediate. Actually in [2] we establish more: A CPC4(II2) equivalence of

the special form xEy «Vz£ Xix,y, z) E D, where D E X3 is analytic, and

for each fixed z, ((x,y): (x,y, z) ED) is an equivalence relation, is an

intersection of co, CA equivalences. So the cardinal estimates on the number

of classes in Corollary 2 apply to such special CPCA equivalences, too.

Corollary 2 was the main result of our thesis [1]. It answers a question of H.

Friedman.   □
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