ZONES OF UNIFORM DECOMPOSITION IN TENSOR PRODUCTS ${ }^{1}$

ALEX JAY FEINGOLD

Abstract

Let V_{λ} be a finite dimensional irreducible module for a complex semisimple Lie algebra. It is shown that the decomposition of tensor products $V_{\lambda} \otimes V_{\tau}$ for all dominant integral weights τ may be derived from those for a finite set of such τ. An explicit choice of such a finite set (depending on λ) is given.

Introduction. Let L be a complex semisimple Lie algebra with simple roots $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ and fundamental weights $\left\{\omega_{1}, \ldots, \omega_{l}\right\}$. That is, $\left\{\omega_{1}, \ldots, \omega_{l}\right\}$ is a basis of the integral weight lattice, Λ, such that $\left\langle\omega_{i}, \alpha_{j}\right\rangle=2\left(\omega_{i}, \alpha_{j}\right) /\left(\alpha_{j}, \alpha_{j}\right)$ $=\delta_{i j}$. By definition, $\tau=\sum_{i=1}^{l} m_{i} \omega_{i} \in \Lambda^{+}$if and only if $m_{i} \geqslant 0$ are all integers. Also, $\sum_{i=1}^{l} \omega_{i}=\delta=\frac{1}{2} \sum \alpha$, where $\alpha \in \Phi^{+}$is the set of all positive roots. All L-modules in this paper are finite dimensional.

Let W denote the Weyl group of $L . W$ is generated by the simple reflections $\left\{\sigma_{1}, \ldots, \sigma_{l}\right\}$, where $\sigma_{i}(x)=x-\left\langle x, \alpha_{i}\right\rangle \alpha_{i}$. For any $i, 1 \leqslant i \leqslant l$, we define $W(i)$ to be the subgroup of W generated by $\left\{\sigma_{j} \mid j \neq i, 1 \leqslant j \leqslant l\right\}$. Note that each element of $W(i)$ fixes ω_{i}.

In all of what follows, the set of weights of the irreducible L-module V_{λ} will be denoted by II.

We shall prove
Theorem 1. Let V_{λ} be the irreducible L-module of highest weight λ. Let $\tau=\Sigma_{j=1}^{l} m_{j} \omega_{j} \in \Lambda^{+}$and $V_{\lambda} \otimes V_{\tau}=\Sigma_{\gamma \in \Lambda^{+}} r_{\gamma} V_{\gamma}$. Then for each $i, 1 \leqslant i \leqslant l$, there is a positive integer n_{i}, depending only on λ, such that if $m_{i} \geqslant n_{i}$, then $V_{\lambda} \otimes V_{\tau+\omega_{i}}=\Sigma_{\gamma \in \Lambda^{+}} r_{\gamma} V_{\gamma+\omega_{i}}$.
We shall give explicit values for the n_{i} in terms of λ.
Theorem 1 should be compared with a result of Kostant [4]. He puts a much stronger requirement on τ, namely that $\mu+\tau$ is dominant for every $\mu \in \Pi$. Under this condition, one can read off the decomposition of $V_{\lambda} \otimes V_{\tau}$ from the weight-space decomposition of $V_{\lambda}: V_{\lambda} \otimes V_{\tau}=\Sigma_{\mu \in \Pi}$ Mult $_{\lambda}(\mu) V_{\mu+\tau}$. The conclusion of Theorem 1 clearly follows for such τ. However, Kostant's condition is satisfied only by dominant weights τ well into the interior of the fundamental chamber, and gives no information about infinitely many weights on or near the chamber walls. Theorem 1, on the other hand,

[^0]© American Mathematical Society 1978
expresses a condition of uniformity along lines in the decomposition of the tensor product $V_{\lambda} \otimes V_{\tau}$ whenever τ is outside a specified finite region.

If we let $S(i)=\cup_{\sigma \in W(i)} \sigma\left(\Lambda^{+}\right)$, then n_{i} may be chosen as the least positive integer such that for each $\mu \in \Pi$ we have $\mu+n_{i} \omega_{i} \in S(i)$.

Corollary 1. Let V_{λ} be fixed. Let $\left(n_{1}, \ldots, n_{l}\right)$ be the l-tuple of positive integers which can be found by the above theorem. If we know the decompositions into irreducible L-modules of the finite set of tensor products $\left\{V_{\lambda} \otimes\right.$ $V_{\tau} \mid \tau=\sum_{j=1}^{l} m_{j} \omega_{j}$ and $m_{j} \leqslant n_{j}$ for all $\left.j, 1 \leqslant j \leqslant l\right\}$, then we know the decomposition of the tensor product of V_{λ} with any irreducible L-module.

Let $i, 1 \leqslant i \leqslant l$, be fixed throughout the following and let $S=S(i)$.
Lemma 1. $\cup_{\sigma \in W(i)} \sigma\left(\Lambda^{+}\right)=\left\{x \in \Lambda \mid\left(x, \sigma \alpha_{i}\right) \geqslant 0, \forall \sigma \in W(i)\right\}$.
Proof. Let $S=\cup_{\sigma \in W(i)} \sigma\left(\Lambda^{+}\right)$and $S^{\prime}=\left\{x \in \Lambda \mid\left(x, \sigma \alpha_{i}\right) \geqslant 0, \forall \sigma \in\right.$ $W(i)\}$. If $x \in \Lambda^{+}$then $\left(x, \alpha_{j}\right) \geqslant 0$ for $1 \leqslant j \leqslant l$, so for any $\alpha \in \Phi^{+},(x, \alpha)$ $\geqslant 0$. For any $\sigma \in W(i), \sigma \alpha_{i} \in \Phi^{+}$because it is certainly a root and has +1 as its α_{i} coefficient, so all coefficients are nonnegative. It follows that $\left(x, \sigma \alpha_{i}\right) \geqslant 0$; that is, $x \in S^{\prime}$. Thus, $\Lambda^{+} \subseteq S^{\prime}$. For any $x \in S^{\prime}$ and any σ, $\sigma^{\prime} \in W(i),\left(\sigma x, \sigma^{\prime} \alpha_{i}\right)=\left(x, \sigma^{-1} \sigma^{\prime} \alpha_{i}\right) \geqslant 0$ since $\sigma^{-1} \sigma^{\prime} \in W(i)$. This means that if $x \in S^{\prime}$ then $\sigma x \in S^{\prime}$ for any $\sigma \in W(i)$. From $\Lambda^{+} \subseteq S^{\prime}$ we then get $S \subseteq S^{\prime}$.
Suppose there is an $x \in S^{\prime}, x \notin S$. In the finite set $\{\sigma x \mid \sigma \in W(i)\}$ let σx be chosen such that $(\sigma x, \delta)$ is maximal. Since $x \notin S, \sigma x \notin \Lambda^{+}$and there is a $j, 1 \leqslant j \leqslant l$, such that $\left(\sigma x, \alpha_{j}\right)<0$. If $j \neq i$ then $\sigma_{j} \in W(i)$ and $\sigma_{j} \sigma \in W(i)$. But $\left(\sigma_{j} \sigma x, \delta\right)=\left(\sigma x, \sigma_{j} \delta\right)=\left(\sigma x, \delta-\alpha_{j}\right)=(\sigma x, \delta)-\left(\sigma x, \alpha_{j}\right)>(\sigma x, \delta)$, contradicting the choice of σx. So $j=i$ and $\left(x, \sigma^{-1} \alpha_{i}\right)=\left(\sigma x, \alpha_{i}\right)<0$. But since $\sigma^{-1} \in W(i)$, this contradicts $x \in S^{\prime}$, giving $S=S^{\prime}$.

Lemma 2. There is an integer $n_{i} \geqslant 0$ such that for any $\mu \in \Pi, \mu+n_{i} \omega_{i} \in S$. The least such n_{i} is $\operatorname{Max}\left\{\left\langle\mu, \alpha_{\mathrm{i}}\right\rangle \mid \mu \in \Pi\right\}$.

Proof. For any $\sigma \in W(i), \quad\left(n_{i} \omega_{i}, \sigma \alpha_{i}\right)=n_{i}\left(\sigma^{-1} \omega_{i}, \alpha_{i}\right)=n_{i}\left(\omega_{i}, \alpha_{i}\right)=$ $n_{i}\left(\alpha_{i}, \alpha_{i}\right) / 2$. The conditions on n_{i} equivalent to $\mu+n_{i} \omega_{i} \in S$ for all $\mu \in \Pi$ are $0 \leqslant\left(\mu+n_{i} \omega_{i}, \sigma \alpha_{i}\right)=\left(\mu, \sigma \alpha_{i}\right)+\left(n_{i} \omega_{i}, \sigma \alpha_{i}\right)=\left(\mu, \sigma \alpha_{i}\right)+n_{i}\left(\alpha_{i}, \alpha_{i}\right) / 2$ for all μ $\in \Pi$ and all $\sigma \in W(i)$. That is, $n_{i} \geqslant-2\left(\mu, \sigma \alpha_{i}\right) /\left(\alpha_{i}, \alpha_{i}\right)=-\left\langle\mu, \sigma \alpha_{i}\right\rangle=$ $-\left\langle\sigma^{-1} \mu, \alpha_{i}\right\rangle=\left\langle\sigma^{-1} \mu, \sigma_{i} \alpha_{i}\right\rangle=\left\langle\sigma_{i} \sigma^{-1} \mu, \alpha_{i}\right\rangle$. Since Π is invariant under W, $\left\{\sigma_{i} \sigma^{-1} \mu \mid \mu \in \Pi, \sigma \in W(i)\right\}=\Pi$. We now have the finite number of conditions $n_{i} \geqslant\left\langle\mu, \alpha_{i}\right\rangle$ for all $\mu \in \Pi$ which has least solution

$$
n_{i}=\operatorname{Max}\left\{\left\langle\mu, \alpha_{i}\right\rangle \mid \mu \in \Pi\right\} \geqslant 0
$$

Lemma 3. For any $\gamma_{1}, \gamma_{2} \in S, \gamma_{1}+\gamma_{2} \in S$.
Proof. Clear from Lemma 1.
Proof of Theorem 1. If we use the notation

$$
T_{\lambda}=\sum_{\sigma \in W} \operatorname{sgn}(\sigma) \exp (\sigma(\lambda+\delta))
$$

then the Weyl character formula says $X_{\lambda} \cdot T_{0}=T_{\lambda}$, where X_{λ} is the character of a representation V_{λ} of highest weight λ. Then the character of $V_{\lambda} \otimes V_{\tau}$ is $X_{\lambda} \cdot X_{\tau}$. After some elementary manipulations, one sees that

$$
X_{\lambda} \cdot X_{\tau} \cdot T_{0}=\sum_{\mu \in \Pi} \operatorname{Mult}_{\lambda}(\mu) \cdot T_{\mu+\tau^{*}}
$$

Replacing τ by $\tau+\omega_{i}$, we also have

$$
X_{\lambda} \cdot X_{\tau+\omega_{i}} \cdot T_{0}=\sum_{\mu \in \Pi} \operatorname{Mult}_{\lambda}(\mu) \cdot T_{\mu+\tau+\omega_{i}}
$$

By Lemma 2, $\mu+n_{i} \omega_{i} \in S$ for all $\mu \in \Pi$. If $\tau=\Sigma_{j=1}^{l} m_{j} \omega_{j}$ satisfies $m_{i} \geqslant n_{i}$, then $\tau-n_{i} \omega_{i} \in \Lambda^{+} \subseteq S$. By Lemma 3, $\mu+\tau=\left(\mu+n_{i} \omega_{i}\right)+(\tau-$ $\left.n_{i} \omega_{i}\right) \in S$. Of course, $\omega_{i}, \delta \in \Lambda^{+} \subseteq S$ and so $\mu+\delta+\tau \in S$ as well as $\mu+\delta+\tau+\omega_{i} \in S$. This means that both $\mu+\delta+\tau$ and $\mu+\delta+\tau+\omega_{i}$ are conjugate by elements of $W(i)$ to dominant weights. In fact, they are conjugate by the same element because if $\sigma_{\mu}(\mu+\delta+\tau) \in \Lambda^{+}$for $\sigma_{\mu} \in$ $W(i)$ then $\sigma_{\mu}\left(\mu+\delta+\tau+\omega_{i}\right)=\sigma_{\mu}(\mu+\delta+\tau)+\omega_{i} \in \Lambda^{+}$. Thus

$$
\begin{aligned}
T_{\mu+\tau} & =\sum_{\sigma \in W} \operatorname{sgn}(\sigma) \exp (\sigma(\mu+\tau+\delta)) \\
& =\sum_{\sigma \in W} \operatorname{sgn}(\sigma) \operatorname{sgn}\left(\sigma_{\mu}\right) \exp \left(\sigma\left(\sigma_{\mu}(\mu+\tau+\delta)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
T_{\mu+\tau+\omega_{i}} & =\sum_{\sigma \in W} \operatorname{sgn}(\sigma) \exp \left(\sigma\left(\mu+\tau+\omega_{\mathrm{i}}+\delta\right)\right) \\
& =\sum_{\sigma \in W} \operatorname{sgn}(\sigma) \operatorname{sgn}\left(\sigma_{\mu}\right) \exp \left(\sigma\left(\sigma_{\mu}(\mu+\tau+\delta)+\omega_{\mathrm{i}}\right)\right)
\end{aligned}
$$

This means that $T_{\mu+\tau} / T_{0}=\operatorname{sgn}\left(\sigma_{\mu}\right) \cdot X_{\sigma_{\mu}(\mu+\tau+\delta)-\delta}$ and $T_{\mu+\tau+\omega_{i}} / T_{0}=\operatorname{sgn}\left(\sigma_{\mu}\right)$ - $X_{\sigma_{\mu}(\mu+\delta+\tau)-\delta+\omega_{i}}$. Then

$$
X_{\lambda} \cdot X_{\tau}=\sum_{\mu \in \Pi} \operatorname{Mult}_{\lambda}(\mu) \cdot \operatorname{sgn}\left(\sigma_{\mu}\right) \cdot X_{\sigma_{\mu}(\mu+\tau+\delta)-\delta}
$$

and

$$
X_{\lambda} \cdot X_{\tau+\omega_{i}}=\sum_{\mu \in \Pi} \operatorname{Mult}_{\lambda}(\mu) \cdot \operatorname{sgn}\left(\sigma_{\mu}\right) \cdot X_{\sigma_{\mu}(\mu+\tau+\delta)-\delta+\omega_{i}}
$$

Grouping equivalent terms together, if $X_{\lambda} \cdot X_{\tau}=\Sigma_{\gamma \in \Lambda^{+}} r_{\gamma} X_{\gamma}$ then the above shows that $X_{\lambda} \cdot X_{\tau+\omega_{i}}=\Sigma_{\gamma \in \Lambda^{+}} r_{\gamma} X_{\gamma+\omega_{i}}$ as claimed by the theorem.

It should be noted that the author originally based his proof on a formula of Klimyk [3], whose geometric nature was essential to the discovery of this result. The present proof, based on the closely related and well-known Weyl character formula, was suggested by the referee.

Note that if $\tau=\sum_{j=1}^{l} m_{j} \omega_{j}$ satisfies $m_{j} \geqslant n_{j}$ for all $j, 1 \leqslant j \leqslant l$, then by Lemma 2, for each $\mu \in \Pi$ and each $j, \mu+n_{j} \omega_{j} \in S(j)$ and $\tau-n_{j} \omega_{j} \in \Lambda^{+} \subseteq$ $S(j)$. Then $\mu+\tau \in S(j)$, which means $\mu+\tau \in \cap_{1<j<l} S(j)$ for all $\mu \in \Pi$. For each $j, \Lambda^{+} \subseteq S(j)$, so $\Lambda^{+} \subseteq \cap_{1 \leqslant j \leqslant l} S(j)$. For each $j, S(j) \subseteq\{x \in$
$\left.\Lambda \mid\left(x, \alpha_{j}\right) \geqslant 0\right\}$. This means that $\cap_{1 \leqslant j \leqslant l} S(j) \subseteq\left\{x \in \Lambda \mid\left(x, \alpha_{j}\right) \geqslant 0\right.$ for all $1 \leqslant j \leqslant l\}=\Lambda^{+}$. We now have $\bigcap_{1 \leqslant j \leqslant l} S(j)=\Lambda^{+}$.

The above says that for each $\mu \in \Pi, \mu+\tau \in \Lambda^{+}$, which is the condition required by Kostant's theorem. Although Kostant used a theorem of Brauer [1] in his proof, Weyl's formula also gives the result as follows. If $\mu+\tau \in \Lambda^{+}$ then $\mu+\delta+\tau$ is strictly dominant, so $\sigma_{\mu}=1$ and $X_{\sigma_{\mu}(\mu+\delta+\tau)-\delta}=X_{\mu+\tau}$. Weyl's formula then says $X_{\lambda} \cdot X_{\tau}=\Sigma_{\mu \in \Pi} \operatorname{Mult}_{\lambda}(\mu) \cdot X_{\mu+\tau}$ which is now a direct sum.

In fact, if $\tau_{0}=\Sigma_{j=1}^{l} n_{j} \omega_{j}$ then no "smaller" dominant weight τ^{\prime} satisfies $\mu+\tau^{\prime} \in \Lambda^{+}$for all $\mu \in \Pi$. If we let $\tau^{\prime}=\sum_{j=1}^{\prime} q_{j} \omega_{j}$ with some $q_{p}<n_{p}$, then the condition $\mu+\tau^{\prime} \in \Lambda^{+}$for all $\mu \in \Pi$ means $\left\langle\mu+\tau^{\prime}, \alpha_{i}\right\rangle \geqslant 0$ for $1 \leqslant i \leqslant$ l. That is, $\left\langle\mu, \alpha_{i}\right\rangle+\sum_{j=1}^{\prime} q_{j}\left\langle\omega_{j}, \alpha_{i}\right\rangle=\left\langle\mu, \alpha_{i}\right\rangle+q_{i} \geqslant 0$. Or $q_{i} \geqslant-\left\langle\mu, \alpha_{i}\right\rangle=$ $\left\langle\mu, \sigma_{i} \alpha_{i}\right\rangle=\left\langle\sigma_{i} \mu, \alpha_{i}\right\rangle$ for all $\mu \in \Pi$ and $1 \leqslant i \leqslant l$. As in Lemma $2,\left\{\sigma_{i} \mu \mid \mu \in\right.$ $\Pi\}=\Pi$, so $q_{i} \geqslant\left\langle\mu, \alpha_{i}\right\rangle$. But from Lemma 2, $n_{p}=\operatorname{Max}\left\{\left\langle\mu, \alpha_{p}\right\rangle \mid \mu \in \Pi\right\}$. Therefore $q_{p} \geqslant n_{p}$, which contradicts $q_{p}<n_{p}$. This shows that the Kostant region of uniform decomposition is precisely $\left\{\tau_{0}+\gamma \mid \gamma \in \Lambda^{+}\right\}$.

Lemma 4. $n_{i}=\operatorname{Max}\left\{\left\langle\mu, \sigma \alpha_{i}\right\rangle \mid \mu \in \Pi \cap \Lambda^{+}, \sigma \in W\right\}$.
Proof. From Lemma 2, $n_{i}=\operatorname{Max}\left\{\left\langle\mu, \alpha_{i}\right\rangle \mid \mu \in \Pi\right\}$. Every $\mu \in \Pi$ is conjugate to some dominant weight in Π, giving the lemma.

We can now give the sharper result.
Lemma 5. $n_{i}=\left\langle\lambda, \theta_{i} \alpha_{i}\right\rangle$ where $\theta_{i} \in W$ is such that $\theta_{i} \alpha_{i}$ is the highest root conjugate to α_{i}. Thus, for L simple, if α_{i} is a short root, $\theta_{i} \alpha_{i}$ is the highest short root, and if α_{i} is a long root, $\theta_{i} \alpha_{i}$ is the highest long root.

Proof. Fix $\mu \in \Pi \cap \Lambda^{+}$. Then for any $\sigma \in W,\left\langle\mu, \sigma \alpha_{i}\right\rangle=$ $2\left(\mu, \sigma \alpha_{i}\right) /\left(\alpha_{i}, \mathrm{a}_{i}\right)$ and $\left\langle\mu, \theta_{i} \alpha_{i}\right\rangle-\left\langle\mu, \sigma \alpha_{i}\right\rangle=2\left(\mu, \theta_{i} \alpha_{i}-\sigma \alpha_{i}\right) /\left(\alpha_{i}, \alpha_{i}\right) \geqslant 0$ since μ is dominant and $\theta_{i} \alpha_{i}-\sigma \alpha_{i}$ is a nonnegative sum of positive roots. So $n_{i}=\operatorname{Max}\left\{\left\langle\mu, \theta_{i} \alpha_{i}\right\rangle \mid \mu \in \Pi \cap \Lambda^{+}\right\}$. It is a well-known fact that $\theta_{i} \alpha_{i}$ is dominant, and since $\lambda-\mu$ is a nonnegative sum of positive roots, we have $\left\langle\lambda, \theta_{i} \alpha_{i}\right\rangle-\left\langle\mu, \theta_{i} \alpha_{i}\right\rangle=\left\langle\lambda-\mu, \theta_{i} \alpha_{i}\right\rangle \geqslant 0$. This says the maximum is attained at $\left\langle\lambda, \theta_{i} \alpha_{i}\right\rangle$.

This precise characterization of n_{i} allows us to calculate the l-tuple, $\left(n_{1}, \ldots, n_{l}\right)$, for each type of algebra in terms of $\lambda=\sum_{i=1}^{l} m_{i} \omega_{i}$. I have labeled the Dynkin diagrams as in [2]. The results are:

$$
\begin{aligned}
A_{l}: n_{i} & =m_{1}+m_{2}+\cdots+m_{l} \text { for } 1 \leqslant i \leqslant l, \\
B_{l}: n_{i} & =m_{1}+2 m_{2}+\cdots+2 m_{l-1}+m_{l} \text { for } 1 \leqslant i \leqslant l-1, \\
n_{l} & =2 m_{1}+2 m_{2}+\cdots+2 m_{l-1}+m_{l}, \\
C_{l}: n_{i} & =m_{1}+2 m_{2}+\cdots+2 m_{l-1}+2 m_{l} \text { for } 1 \leqslant i \leqslant l-1, \\
n_{l} & =m_{1}+m_{2}+\cdots+m_{l-1}+m_{l}, \\
D_{l}: n_{i} & =m_{1}+2 m_{2}+\cdots+2 m_{l-2}+m_{l-1}+m_{l} \text { for } 1 \leqslant i \leqslant l, \\
E_{6}: n_{i} & =m_{1}+2 m_{2}+2 m_{3}+3 m_{4}+2 m_{5}+m_{6} \text { for } 1 \leqslant i \leqslant 6, \\
E_{7}: n_{i} & =2 m_{1}+2 m_{2}+3 m_{3}+4 m_{4}+3 m_{5}+2 m_{6}+m_{7} \text { for } 1 \leqslant i \leqslant 7,
\end{aligned}
$$

$$
\begin{aligned}
& E_{8}: n_{i}=2 m_{1}+3 m_{2}+4 m_{3}+6 m_{4}+5 m_{5}+4 m_{6}+3 m_{7}+2 m_{8} \\
& F_{4}: n_{1}=n_{2}=2 m_{1}+3 m_{2}+2 m_{3}+m_{4}, \\
& \quad \text { for } 1 \leqslant i \leqslant 8, \\
& n_{3}=n_{4}=2 m_{1}+4 m_{2}+3 m_{3}+2 m_{4}, \\
& G_{2}: n_{1}=2 m_{1}+3 m_{2}, \\
& n_{2}=m_{1}+2 m_{2} .
\end{aligned}
$$

For L semisimple, these formulas are applied to each simple component separately. If α_{i} is in a certain component of the Dynkin diagram of L, then the highest root conjugate to α_{i} involves only the roots in that component. So n_{i} is calculated according to the type of that component and is given by one of the above formulas involving only those m_{j} such that α_{j} is in that component.

References

1. R. Brauer, Sur la multiplication des caractéristiques des groupes continus et semi-simples, C. R. Acad. Sci. Paris Sér A-B. 204 (1937), 1784-1786.
2. J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math., no. 9, Springer-Verlag, New York, 1972.
3. A. U. Klimyk, Decomposition of a tensor product of irreducible representations of a semisimple Lie algebra into a direct sum of irreducible representations, Ukrain. Mat. Ž. 18 (1966), 19-27; English transl., Amer. Math. Soc. Transl. (2) 76 (1968), 63-73.
4. B. Kostant, A formula for the multiplicity of a weight, Trans. Amer. Math. Soc. 93 (1959), 53-73.

Department of Mathematics, Yale University, Box 2155, Yale Station, New Haven, Connecticut 06520

Current address: Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104

[^0]: Received by the editors June 2, 1976 and, in revised form, September 20, 1976.
 AMS (MOS) subject classifications (1970). Primary 17B10; Secondary 81A78.
 ${ }^{1}$ Research partially supported by NSF research grant MPS72-04643.

