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ZONES OF UNIFORM DECOMPOSITION IN

TENSOR PRODUCTS1

ALEX JAY FEINGOLD

Abstract. Let Vx be a finite dimensional irreducible module for a complex

semisimple Lie algebra. It is shown that the decomposition of tensor

products Vx ® Vr for all dominant integral weights t may be derived from

those for a finite set of such r. An explicit choice of such a finite set

(depending on X) is given.

Introduction. Let L be a complex semisimple Lie algebra with simple roots

(a,, . . . , a,} and fundamental weights {«„ . . . , a¡). That is, {ax, . . . , a¡) is

a basis of the integral weight lattice, A, such that <w„ ay) = 2(w„ af)/(aj, af)

= 8¡j. By definition, t = 2'_,m,w, G A+ if and only if m, > 0 are all integers.

Also, 2' = 1<o, = 8 = jUa, where a E 3>+ is the set of all positive roots. All

L-modules in this paper are finite dimensional.

Let W denote the Weyl group of L. W is generated by the simple

reflections {o,,. .., o,), where o¡(x) = x — (x, a,)a,. For any i, 1 < / < /,

we define W(i) to be the subgroup of W generated by {oj\j =£ i, I < j < l).

Note that each element of W(i) fixes «,.

In all of what follows, the set of weights of the irreducible L-module Vx

will be denoted by IT.

We shall prove

Theorem 1. Let Vx be the irreducible L-module of highest weight X. Let

t = S' = 1m,wy. G A+ and Vx ® VT = IlyeA+ryVy. Then for each i, I < i < I,

there is a positive integer «„ depending only on X, such that if m¡ > n¡, then

Vx®VT+ai = ZyeA,ryVy+ur

We shall give explicit values for the n, in terms of X.

Theorem 1 should be compared with a result of Kostant [4]. He puts a

much stronger requirement on t, namely that p + t is dominant for every

u G IL Under this condition, one can read off the decomposition of Vx ® VT

from the weight-space decomposition of Vx: Vx® VT = E^gnMult^/i)!^.,.,..

The conclusion of Theorem 1 clearly follows for such t. However, Kostant's

condition is satisfied only by dominant weights t well into the interior of the

fundamental chamber, and gives no information about infinitely many

weights on or near the chamber walls. Theorem 1, on the other hand,
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expresses a condition of uniformity along lines in the decomposition of the

tensor product Vx <8> VT whenever t is outside a specified finite region.

If we let 5 (i) = U „<= fV,i)a(A+), then n¡ may be chosen as the least positive

integer such that for each u E IT we have u + «,¿o, E S(i).

Corollary 1. Let Vx be fixed. Let (nx, . . ., n¡) be the l-tuple of positive

integers which can be found by the above theorem. If we know the decom-

positions into irreducible L-modules of the finite set of tensor products { Vx ®

Vt\t = 2Z'j^xm.jUj and mj < it for all j, 1 < j < /}, then we know the

decomposition of the tensor product of Vx with any irreducible L-module.

Let i, 1 </'</, be fixed throughout the following and let S = S (i).

Lemma 1. U aeW(i)o(A+) = {x E A|(x, aa¡) > 0, Va E W(i)}.

Proof. Let S = UaSW(i)o(A+) and S' = {x E A\(x, aa¡) > 0, Va E

W(i)}. If x E A+ then (x, a,) > 0 for 1 < j < I, so for any a E $+, (x, a)

> 0. For any a E W(i), aa¡ E í>+ because it is certainly a root and has +1

as its a, coefficient, so all coefficients are nonnegative. It follows that

(x, aa¡) > 0; that is, x E 5'. Thus, A+ Q S'. For any x E S' and any a,

a' E W(i), (ax, a'a,) = (x, a~xa'a,) > 0 since a-'a' E W(i). This means that

if x E S' then ax E S' for any a E W(i). From A+ G S' we then get

S C S'.

Suppose there is an x E S', x £ S. In the finite set (ax|a E W(i)} let ox

be chosen such that (ox, 8) is maximal. Since x Í S, m Í A+ and there is a

y, 1 < j < /, such that (ax, a,) < 0. If y ^ f then a, E W(/) and oya E W(i).

But (a^ax, ¿5) = (ox, OjS) = (ox, 8 — a-) = (ax, ¿5) — (ax, a-) > (ax, ¿S),

contradicting the choice of ox. So y = i and (x, a ~ 'a,) = (ax, a,) < 0. But

since a-1 E W(i), this contradicts x E S", giving S = S'.

Lemma 2. 77ifcre ii ¿777 integer n¡ > 0 such that for any p. E n, u + tj,¿o, E S.

The least such n¡ is Max{< /x, a¡>| /1 E n}.

Proof. For any o E W(i), (n,co„ oa¡) = «,(a_1¿o„ a¡) = n,(¿o,, a,) =

n¡(a¡, a,)/2. The conditions on 77, equivalent to ju, + n¡w¡ E S for all u E U are

0 < (ju + 77,¿o„ oa,) = (/x, aa,) + (71,to,, oa¡) = (/x, aa,) + n,(a„ a,)/2 for all u

En and all oE W(i). That is, n¡ > -2(u, oai)/(a¡, a¡) = -<u, aa,> =

-<a"'ii, a,> = <a"'//,, a,a,> = <a,a_1/x, a,). Since II is invariant under W,

{o,a_Iu|ii E II, aE W(/)} = n. We now have the finite number of

conditions «, > < /x, a,> for all /t E n which has least solution

n¡ = Max{< jtx, a¡)\ 11 E n} > 0.

Lemma 3. Tw a/iy y,, y2 £ 51, y, + y2 E 5.

Proof. Clear from Lemma 1.

Proof of Theorem 1. If we use the notation

T\ =  S  sgn(a) exp(a(X + 8)),
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then the Weyl character formula says Xx- T0= Tx, where Xx is the character

of a representation Vx of highest weight X. Then the character of Vx ® VT is

Xx • Xr. After some elementary manipulations, one sees that

XX-XT-T0=  £  Multx(u)-7;+T.
fien

Replacing t by t + to,, we also have

Xx-Xr+«-T0=   2   MultA(p)-7;+T+^.
iien

By Lemma 2, u + «,w, G S for all p G n. If t = 2' = 1 m,co, satisfies

mi > n¡, then t — m,co, G A+ Ç 5. By Lemma 3, p + t = (u + n¡a¡) + (t -

n,w,) G S. Of course, a¡, 8 G A+ Ç. S and so p + 5 + t G S as well as

H + 8 + t + UjES. This means that both u + ô + t and p + 5 + t + w,

are conjugate by elements of JT(/) to dominant weights. In fact, they are

conjugate by the same element because if a (u + 5 + r) E A+ for o^ G

W(z') then op(n + 8 + t + a¡) = o^p + 8 + t) + to, G A+. Thus

T^+t =  2  sgn(a) exp(a(u + t + 5))
OE.W

=  2   sgn(a) sgn(oM) exp(o(o(1(p + t + 8)))
a&W

and

7;+T+H =  2   sgn(o)exp(a(u + t + co¡ + 5))

=  2   sgn(a) sgn^) exp(a(aM(p + t + 5) + <o¡)).
oew

This means that T^JT0 = sgn(aM) • X^f¡k+T+t)_s and 7;+T+u /T0 = sgn^)

' ^(u+«+t)-í+<ü/ Then

Xx • *r =  S   Multx( M) • sgn(°u) • \(u+T+fi)-i

and

*a • xr+u¡ =  2   Multx( u) • sgn^) • *-(,,+,+«)-.«+«*.
(lEll

Grouping equivalent terms together, if Xx ■ Xr = 2yeA+ r X then the above

shows that Xx- XT+U¡ = 2y6A+ ryXy+Ui as claimed by the theorem.

It should be noted that the author originally based his proof on a formula

of Klimyk [3], whose geometric nature was essential to the discovery of this

result. The present proof, based on the closely related and well-known Weyl

character formula, was suggested by the referee.

Note that if t = 2'_, m,co, satisfies m} > n¡ for ally, 1 < j < /, then by

Lemma 2, for each u G n and eachy, p + n,a, G S (J) and t - /?.<o. G A+ C

S(j). Then u + t G S(j), which means u + r G C\ i <,</•£(/) f°r aH u G II.

For each./, A+ Ç S(J), so A+ Ç D \<J<iS(J)- F°r each7, S(j) Q {x E
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A|(x, aß > 0}. This means that n i<y</'S'(/) Q {x E A|(x, aß > 0 for all

1 < j < /} - A+. We now have D i<J<iS(f) = A+.

The above says that for each u E II, u + tEA+, which is the condition

required by Kostant's theorem. Although Kostant used a theorem of Brauer

[1] in his proof, Weyl's formula also gives the result as follows. If ¡i + t E A+

then h + ¿5 + t is strictly dominant, so aM = 1 and Xa (/1+s+T)_Ä = X +T.

Weyl's formula then says Xx • XT = 2,,en Mult\(/x)- Xfl+T which is now a

direct sum.

In fact, if t0 = 2' = 1 nfUj then no "smaller" dominant weight t' satisfies

u + t' E A+ for all h E n. If we let t' = 2j=, ¿7y¿o, with some qp < np, then

the condition /x + t' E A+ for all u E II means < « + r', a¡) > 0 for 1 < i <

I. That is, < u, a,.> + 2,_, $<«,, «,-> = < /*, «,-> + q, > 0. Or ¿7, > - < /x, a,> =

</a, a,-««,-) = <a,/x, a,-> for all /x E n and 1 < i < /. As in Lemma 2, {o,/¿| ¡x E

n) = n, so ¿7, > </x, a,>. But from Lemma 2, tj^ = Max{<u, t^,>|/x E II}.

Therefore qp > np, which contradicts qp < np. This shows that the Kostant

region of uniform decomposition is precisely {T0+y|yEA+}.

Lemma 4. n¡ - Max{< u, oa¡)\ /x £ Il n A+, a E W).

Proof.   From  Lemma  2,  77, = Max(</x, a,)|u E II}.   Every p, E U  is

conjugate to some dominant weight in Ü, giving the lemma.

We can now give the sharper result.

Lemma 5. 77, = <X, f?,a,> where 0¡ £ W is such that 0¡a¡ is the highest root

conjugate to a¡. Thus, for L simple, if a¡ is a short root, 9¡a¡ is the highest short

root, and if a, is a long root, f?,a, is the highest long root.

Proof. Fix u £ n n A + . Then for any o E W, </x, oa¡) =

2(u, oai)/(ai, a,) and <ii, r7,a,> - <u, oa^ = 2(/x, 9¡a¡ - oai)/(ai, a¡) > 0

since ti is dominant and 9¡a¡ — oa¡ is a nonnegative sum of positive roots. So

72, = Max{<ix, f?,a,>|/x £ n n A+}. It is a well-known fact that 9¡a¡ is

dominant, and since X — /x is a nonnegative sum of positive roots, we have

<X, 9¡a¡) — ( n, 9¡a/) = (X — ¡i, f?,a,> > 0. This says the maximum is attained

at <X, f/>,.>.

This precise characterization of n, allows us to calculate the /-tuple,

(nx, . . ., n¡), for each type of algebra in terms of X = 2'_i fn¡a¡. I have

labeled the Dynkin diagrams as in [2]. The results are:

A¡: TJ, = 771, + 7712 +  •   •   •   + 777/      fOT 1   <  I  <   /,

B¡: tj, = 777,+ 2m2 + • • • + 2t7i/_, + m,   for 1 < / < / - 1,

n, = 2m, + 2m2 + ■ ■ ■ + 2m,_x + m,,

C,: 71, = 777, + 2t772 +   •   •  •   + 2/77/_, + 2777,     fOT 1  <  I <  / — 1,

n¡ = mx + m2 + ■ ■ ■ + m,_x + m¡,

D¡: n¡ = T«, + 2t7j2 + • • • + 2m¡_2 + m,_x + m¡   for 1 < / < /,

E6: n¡ = m,-l- 2t7j2 + 2m3 + 3m4 + 2m5 + m6   for 1 < i < 6,

£7: n¡ = 2/77, + 2/n2 + 3/w3 + 477J4 + 3/7i5 + 2m6 + m7   for 1 < / < 7,
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Es: n¡ = 2mx + 3m2 + Am3 + 6m4 + 5m5 + Am6 + 3m7 + 2m%

for 1 < / < 8,

F4: nx = n2 = 2m, + 3m2 + 2m3 + m4,

n3 = n4 = 2mx + Am2 + 3m3 + 2m4,

G2: n, = 2m, + 3m2,

n2 = m, + 2m2.

For L semisimple, these formulas are applied to each simple component

separately. If a, is in a certain component of the Dynkin diagram of L, then

the highest root conjugate to a, involves only the roots in that component. So

n¡ is calculated according to the type of that component and is given by one

of the above formulas involving only those m, such that a, is in that

component.
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