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A COUNTEREXAMPLE TO A CONJECTURE

OF A. H. STONE

HAROLD BELL AND R. F. DICKMAN, JR.

Abstract. A. H. Stone has offered a sequence, {5(n); n > 2}, of

conjectures characterizing multicoherence for locally connected, connected,

normal spaces. The conjecture S(n) is, "X is multicoherent if and only if X

can be represented as the union of a circular chain of continua containing

exactly n elements". It is known that 5(3) always obtains and that 5(6)

obtains if the space is compact. In this paper, we construct a multicoherent

plane Peano continuum C for which 5(7) fails. Since S(n + 1) implies S(n),

n > 2, S(n) fails for C for all n > 6. Furthermore we show that for any

integer n > 3 there exists a plane Peano continuum for which 5(2n) obtains

while 5(2n + l) fails.

Introduction. Throughout this paper X will denote a locally connected,

connected normal space. By a continuum we mean a closed and connected

(not necessarily compact) subset of A. For A g X, b0(A) denotes the number

of components of A less one (or oo if this number is infinite). The degree of

multicoherence, r(X), of A is defined by

r(X) = s\xp{b0(H n A): X = H \j K and H and A are subcontinua of X ).

If r(X) = 0, A is said to be unicoherent and we say that A is multicoherent

otherwise. By a chain k in A we mean a finite collection of subcontinua of X

that can be ordered <c = (A,, K2, . . ., A„} so that A, n K} i=0 if and only if

11 — j\ < LA circular chain in A is a collection of subcontinua k such that no

three members of k have a point in common and if A E k, then k - {A} is a

chain in A. Let n > 2 be an integer and let S(n) denote the following

statement:

S(n): X is multicoherent if and only if X can be represented as the union

of a circular chain containing exactly n elements.

In a private communication, A. H. Stone conjectured that S(n) is true for

all n > 2 and he stated that he had established S (n) for all n > 2 whenever

0 < r(X) < oo. A. D. Wallace established S(3) for Peano continua in [4]. A.

H. Stone announced S (3) for locally connected normal spaces in [3] and in

[2], the second author included a proof of 5(3) for such spaces. In [1], the

second author showed that S (4) obtains for a large class of spaces and in [2],

he showed that S (6) always obtains if A is compact. The purpose of this note
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is to give an example of a multicoherent plane Peano continuum for which

S (7) fails.

Lemma 9. Let a and b be distinct points in X and suppose that X — {a, b) =

R U P U Q where R, P and Q are pairwise disjoint open connected sets and

R n P PI Q = {a, b). If k is a circular chain in X and U tc = X and some

K £ k lies entirely in R, then (P u Q) meets at most four elements of k.

Proof. Notice that {a, b) is the boundary of each of P, Q and R. Let

K0 e R and {Kx, K2, . . . , Kn) be a chain representation of k — {K0). Let S

be the union of those A' £ tc that contain a, let T be the union of those K E k

that contain b, and let V be the union of those K E k that contain neither a

or b. Clearly, V has at most two components, one ofwhich contains K0 and is

therefore contained in R. It follows that either P or Q must fail to intersect V.

Therefore either QeSuT or PeSuT. Since both P and Q are

connected and intersect both S and T it follows that S C\ T =£0. That is,

there is a k > 0 such that {a, b) c Kk U Kk+X. It follows that K¡ E R except

possibly when / = k — 1, k, k + 1 or k + 2.

Construction of the example. For each positive integer i, let C, be a

one-dimensional simplicial complex in the plane, with Vi as its set of vertices

and S, as its set of edges, constructed as follows:

Let Vx consist of three evenly distributed points on the unit circle (z:

\z\ = 1} and let S, consist of three connecting open intervals. Then C, =

U {/: / E S,) U Vx. Let % = {U(I): I £ S,} be a set of mutually

disjoint bounded open convex sets such that / c U(I) for / E £,. Suppose

Cn, Vn, %„, and S„ have been defined. For each / E S„ let a(I), b(I) be the

endpoints of /, and m(I) its midpoint (a(I) + b(I))/2. Let /„ be chosen so

that 1 < /„ < 1 + 1/tj and (for all / E &„) the two "half-open" line

segments (a(I), tnm(I)], [tnm(I), b(I)) are both contained in U(I). Let

Vn+i = Vn u {m(I): I E &„} u {t„m(I): I E &„}. Let Sn+1 = {(a(I),

m(I)): I £ &„) u {(m(/), />(/)): / e &„} U {(*(/), /nm(/)): / £ &„} u

{(/„roí/), />(/)): / E S„}.Then C„+1 = U {/: / £ S„+,} U Vn+X. Let %„+1

= {U(I): I E &n+x} be a set of mutually disjoint open convex sets such that

if / E %n+1 and J E \_ and / c t/(/) then / c U(I) C U(J). Let

F> = U,°1,C, andlet C = D.

It is clear that C is multicoherent. By Theorems 3 and 6 of [2], 5(6) obtains

for C. We will now show that 5(7) fails for C. (Since (Sn + 1) always implies

5(tj), S(k) for Ac > 6 fails for C.)

Definition. For / = (a(I), b(I)) E g„ let /' = (a(I), t„m(I)] u [inw(/),

b(I)); we use the convention (/')' = /. Let S„' = {/': / E S„} u &„■

The following lemma seems clear.

Lemma A. (1) C is a Peano continuum.

(2) /// E £„' ¿a? endpoints a(I) and b(I) then C - {a(I), b(I)) has exactly

three components P(I), P(I') and Q(I) where I E P(I) andI' C F(/').

(3) If, for each i, /, E 6/ i/te« lim,^ dia(/,) = lim^dia F(/,) = 0.
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Theorem 1. The plane Peano continuum C cannot be the union of a circular

chain with seven elements.

Proof. Suppose to the contrary that k is a circular chain with seven

elements and \J k = C. Since each of the three vertices of C, is contained in

at most two A E k it follows that some A E k contains no vertex of C, and is

therefore contained in P(Ix) for some /, E S,'. If a and b axe the endpoints

of /,, we may write C - [a, b) as the union of R = P(Ix), P = P(I[) and

Q = Q(Ix). According to Lemma 9, (P u Q) meet at most four elements of k

and so R contains three elements, say A,1, K2, and A3'. Now the vertex of C2

that lies in R, must miss one of these A,''s, say K\. Then there is an I2 E &2

such that P(I2) contains A,'. Let a2, b2 be the endpoints of I2 and note that

C-{a2,b2) = P(I2)uP(I2)uQ(I2).

Again by Lemma 6, P(I2) must contain 3 elements of k and hence the new

vertex of C3 that lies in P(I2) must miss one of these elements of k. We

continue as above and select a sequence /2, /3,.. ., such that /, E £/,

P(I(j+l)) G P(Ij) and each P(If) contains a member of k, Kj. Since k is finite,

there is a subsequence {L } such that A, = Kj for all r, s > 1. But then

Kjl G r)™=2P(I„), and, by Lemma A, A, must be a singleton. Of course, this

is impossible and this completes the proof.

Theorem 2. For all integers n > 3, there exists a plane Peano continuum

P(n) such that S(2n) obtains but 5(2« + I) fails.

Proof. We construct P(n) in the same fashion we constructed C except in

this instance we change the example by letting C, be a regular n-gon. If / is

an edge in C, with endpoints a and b then P(I)uP(F) can be easily written
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as the union of two continua Kf and K¡ where a £ K¡ and b £ Kf. Then

{AT/: / is an edge in C,} u {AT/: / is an edge in C,} is a circular chain that

covers F(tj) and has 2« elements. Let tc be any circular chain that covers

F(tj). If every element of jc contains a vertex of C, then k has at most 2«

elements. If some element of tc fails to contain a vertex of C, then there is an

/ E S,' such that P(I) contains an element of tc. The same proof used for

P (3) then shows that in this case k has at most 6 elements.

Remark. The authors have not been able to construct an example of a

plane Peano continuum P for which 5(2tj + 1) obtains while S(2ti + 2) fails.
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