THE LEBESGUE DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SEMIGROUP-VALUED MEASURES

PANAIOTIS K. PAVLAKOS

ABSTRACT. The present paper is concerned with partially ordered semigroup-valued measures. Below are given generalizations of the classical Lebesgue Decomposition Theorem.

These results can be applied to Stone or W^* algebra-valded positive measures (cf. [3], [12], [13], [14]).

1. Preliminaries. By a partially ordered semigroup X we mean a commutative semigroup with identity 0, equipped by a partial ordering \leq , compatible with the structure of X under the conditions:

(i) If x, y, z are elements of X with x < y ($x \le y$ and $x \ne y$) then x + z < y + z.

(ii) $x + \sup E = \sup (x + E)$, whenever there exist $\sup E$ (the supremum of E in X) and $\sup(x + E)$, $E \subseteq X$, $x \in X$.

Now X is monotone complete if every majorised increasing directed family in X has a supremum in X. Moreover, X is of the countable type if every subset E of X that has a supremum in X, contains a countable subset $E^* \subseteq E$ so that: sup $E = \sup E^*$.

Let X be a partially ordered semigroup and H a ring of subsets of T. The function $m: H \to X$ is an o-measure (order measure) on H, if m is positive on H ($m(A) \ge 0$, for every A in H) and $m(\bigcup_{n \in N} A_n) = \sup\{\sum_{i=1}^n m(A_i): n \in N\}$ whenever $(A_n)_{n \in N}$ is a disjoint sequence of elements of H with $(\bigcup_{n \in N} A_n) \in H$.

The following propositions can be easily proved.

PROPOSITION 1.1. Let $m: H \rightarrow X$ be an o-measure on H.

 $(1) m(\emptyset) = 0.$

(2) m is finitely additive on H and $m(A) \leq m(B)$, whenever A, $B \in H$ with $A \subseteq B$.

(3) For every sequence $(A_n)_{n \in N}$ in H with $(\bigcup_{n \in N} A_n) \in H$ and $\sup\{\sum_{i=1}^{n} m(A_i): n \in N\} \in X$, implies: $m(\bigcup_{n \in N} A_n) \leq \sup\{\sum_{i=1}^{n} m(A_i): n \in N\}$.

© American Mathematical Society 1978

Received by the editors August 22, 1977 and, in revised form, November 30, 1977.

AMS (MOS) subject classifications (1970). Primary 46G99; Secondary 28A55.

Key words and phrases. Partially ordered semigroup, monotone complete partially ordered semigroup, partially ordered semigroup of the countable type, σ -measure, absolutely continuous and singular σ -measure, partially ordered topological semigroup, σ -compatible topology with the partial ordering, τ_X -measure.

(4) If X is monotone complete then for every disjoint family $(A_i)_{i \in I}$ in H with $(\bigcup_{i \in I} A_i) \in H$ implies: $m(\bigcup_{i \in I} A_i) \ge \sum_{i \in I} m(A_i) := \sup\{\sum_{i \in J} m(A_i): J \subseteq I, J \text{ finite}\}.$

PROPOSITION 1.2. The function $m: H \to X$ is an o-measure on H if and only if m is positive, finitely additive on H and $m(A_n)\uparrow m(A)$ ($m(A_n) \leq m(A_{n+1})$, $n \in N$ and $m(A) = \sup\{m(A_n): n \in N\}$), for every increasing sequence $(A_n)_{n \in N}$ in H with $A_n \uparrow A \in H$.

2. Absolutely continuous and singular o-measures. Let X, Y be partially ordered semigroups and let $m: H \to X$, $l: H \to Y$ be o-measures on H. l is m-absolutely continuous on H ($l \ll m$) if l(A) = 0 whenever $A \in H$ with m(A) = 0. On the other hand l is m-singular on H, ($l \perp m$) if for every A in H there is B in H: $B \subseteq A$, m(B) = 0 and l(A - B) = 0. So $m \perp l$ if and only if $l \perp m$.

The following proposition can be easily verified.

PROPOSITION 2.1. Let $m: H \rightarrow X$, $l: H \rightarrow Y$ and $k: H \rightarrow Y$ be o-measures on H.

(1) If $l \perp m$ and $l \ll m$ then l = 0.

(2) If $l \perp m$ and $k \ll m$ then $l \perp k$.

(3) $l \perp l$ if and only if l = 0.

(4) If $m \perp l$ and $m \perp k$ then $m \perp (l + k)$.

(5) If $l \perp m$ and $k \perp m$ then $(l + k) \perp m$.

(6) If X = Y, and $l \leq m + k$, $l \perp m$ then $l \leq k$.

On the other hand the following lemma will be useful in the sequence.

LEMMA 2.2. Let $m_i: H \to X$, $i \in I$, be an increasing directed family of o-measures on H. Suppose, that X is a monotone complete partially ordered semigroup and for every $A \in H$ there is x in X such that: $m_i(A) \leq x$, whenever $i \in I$. Then the function $m: H \to X$, $m(A) = \sup\{m_i(A): i \in I\}$ is an o-measure on H.

PROOF. Let $A, B \in H$ with $A \cap B = \emptyset$, so $m(A \cup B) = \sup\{m_i(A \cup B): i \in I\} = \sup\{m_i(A) + m_i(B): i \in I\} \le \sup\{m_i(A): i \in I\} + \sup\{m_i(B): i \in I\} = m(A) + m(B)$. Furthermore let i, j be any pair of indices. Then there exist $h \in I$ such that, h > i and h > j, hence $m_i(A) + m_j(B) \le m_h(A) + m_h(B) = m_h(A \cup B) \le m(A \cup B)$, which implies $m(A) + m(B) = m(A \cup B)$, namely m is finitely additive on H. Evidently $m(A) \le m(B)$ whenever A, $B \in H$ with $A \subseteq B$.

Finally let $(A_n)_{n \in N}$ be a sequence in H with $A_n \uparrow A \in H$. Then $m_i(A_n) \uparrow m_i(A)$, for every *i* in *I*. Thus:

$$\sup\{m(A_n): n \in N\} = \sup\{\sup\{m_i(A_n): i \in I\}: n \in N\}, \qquad (1)$$

$$m(A) = \sup \{ \sup \{ m_i(A_n) : n \in N \} : i \in I \}.$$
(2)

But $\{m_i(A_n): i \in I, n \in N\} = \bigcup_{i \in I} \{m_i(A_n): n \in N\} = \bigcup_{n \in N} \{m_i(A_n): i \in I\}$, hence

$$\sup\{\sup\{\sup\{m_i(A_n): i \in I\}: n \in N\} = \sup\{\sup\{m_i(A_n): n \in N\}: i \in I\} \\ = \sup\{m_i(A_n): i \in I, n \in N\}$$
(3)

(cf. [11, p. 12, Theorem I.6.1]). Therefore by (1), (2) and (3) it follows that $m(A_n)\uparrow m(A)$ and the assertion follows from Proposition 1.2.

Hereafter by S it is denoted a σ -ring of subsets of T.

PROPOSITION 2.3. Let $m_i: S \to X$, $i \in I$ be an increasing directed family of o-measures on S and $l: S \to Y$ be another o-measure on S. Suppose that X is of the countable type partially ordered semigroup, $\sup\{m_i(A): i \in I\} = m(A) \in X$, whenever $A \in S$ and $m_i \perp l$ for every $i \in I$. Then $m: S \to X$ is an o-measure on S with $m \perp l$.

PROOF. By Lemma 2.2 it follows that *m* is an *o*-measure on *S*. Now let $A \in S$. Then there is a countable subset $\{i(n): n \in N\}$ of *I*, such that: $m(A) = \sup\{m_{i(n)}(A): n \in N\}$. On the other hand, there is a sequence $(B_n)_{n \in N}$ in *S* with $B_n \subseteq A$, $m_{i(n)}(A) = m_{i(n)}(B_n)$ and $l(B_n) = 0$, for every $n \in N$. We put $B = \bigcup_{n \in N} B_n$ hence $B \subseteq A$, $m_{i(n)}(A) = m_{i(n)}(B)$ and l(B) = 0, $n \in N$. Consequently

 $m(A) = \sup\{m_{i(n)}(A): n \in N\} = \sup\{m_{i(n)}(B): n \in N\} \le m(B) \le m(A),$ so m(A - B) = 0 and l(B) = 0.

COROLLARY 2.4. Let $m_n: S \to X$, $n \in N$, be an increasing sequence of o-measures on S and let $l: S \to Y$ be another o-measure on S. Suppose that $\sup\{m_n(A): n \in N\} = m(A) \in X$, whenever $A \in S$ and $m_n \perp l$, for every $n \in N$. Then $m: S \to X$ is an o-measure on S and $m \perp l$.

3. The Lebesgue Decomposition Theorem. First we give the following:

LEMMA 3.1. Let $m: S \to X$ be an o-measure on the σ -ring S and let Λ be a nonempty subfamily of S closed to countable unions. Suppose that X is a monotone complete of the countable type partially ordered semigroup. Then the function $m_1: S \to X$, $m_1(A) = \sup\{m(A \cap M): M \in \Lambda\}$, is an o-measure on S and for every A in S, there exists $M \in \Lambda$ such that $m_1(A) = m(A \cap M)$.

PROOF. Let $A \in S$. From the hypothesis it is easily verified that there exists an increasing sequence $(M_n)_{n \in N}$ in Λ with $M_n \uparrow M \in \Lambda$ and $m(A \cap M) =$ $\sup\{m(A \cap M_n): n \in N\} = m_1(A).$

Next let $(m_M)_{M \in \Lambda}$ be the increasing directed family of *o*-measures on *S*, such that $m_M(A) = m(A \cap M)$ whenever $M \in \Lambda$ and $A \in S$. By Lemma 2.2 and from $m_1(A) = \sup\{m_M(A): M \in \Lambda\}$, $A \in S$ it follows that m_1 is an *o*-measure on *S*.

THEOREM 3.2 (LEBESGUE DECOMPOSITION). Let the o-measures be $m: S \rightarrow X$, $l: S \rightarrow Y$ on the σ -ring S. Suppose, Y is a monotone complete of the countable type partially ordered semigroup. Then there exist unique o-measures $l_i: S \rightarrow Y$, i = 1, 2, such that:

$$l = l_1 + l_2, \quad l_1 \ll m, \quad l_2 \perp m, \quad l_1 \perp l_2.$$

PROOF. We consider the functions: $l_1: S \to Y$, $l_2: S \to Y$, $l_1(A) = \sup\{l(A \cap M): M \in \Lambda\}$, $l_2(A) = \sup\{l(A \cap Q): Q \in \Theta\}$ where $\Theta = \{Q \in S: m(Q) = 0\}$ and $\Lambda = \{M \in S: l_2(M) = 0\}$. Clearly from Lemma 3.1 the functions $l_i: S \to Y$, i = 1, 2, are *o*-measures on S and there exist $M \in \Lambda$, $Q \in \Theta$ such that:

$$l_1(A) = l(A \cap M) = l_1(A \cap M),$$
(4)

$$l_2(A) = l(A \cap Q) = l_2(A \cap Q).$$
(5)

If m(A) = 0 then $(A \cap M) \in \Theta$, hence $l_1(A) = l(A \cap M) = l_2(A \cap M) = 0$, namely $l_1 \ll m$.

On the other hand $(A - Q) \in \Lambda$ (because $(A - Q) \notin \Lambda$ implies $l_2(A - Q) > 0$, so by (5) $l_2(A) > l_2(A)$, that is a contradiction), therefore $l(A - Q) = l_1(A - Q) = l_1(A)$. Thus $l(A) = l(A - Q) + l(A \cap Q) = l_1(A) + l_2(A)$. Now from (4) and (5) one obviously has $l_1 \perp l_2$ and $l_2 \perp m$. To show uniqueness let $l = l_1 + l_2 = l_3 + l_4$ be two such decompositions. Evidently $l_4 \perp l_1$ and $l_2 \perp l_3$. So from $l_2 \leq l_3 + l_4$ and $l_4 \leq l_1 + l_2$ imply $l_2 \leq l_4$ and $l_4 \leq l_2$, hence $l_2 = l_4$. Furthermore from $l_1 \perp l_2$, $l_3 \perp l_2$, $l_1 \leq l_2 + l_3$ and $l_3 \leq l_1 + l_2$ we also have $l_1 = l_3$.

4. Partially ordered topological semigroup-valued measures. Throughout this paragraph we suppose that X is a partially ordered topological semigroup, that is a partially ordered semigroup, equipped with a Hausdorff topology τ_X such that the sets: $E_x := \{y \in X: y \ge x\}, F_x := \{y \in X: y \le x\}$ are τ_X -closed, whenever $x \in X$. In this place we give the well-known lemma.

LEMMA 4.1. Let $(x_i)_{i \in I}$ be an increasing directed family in the partially ordered topological semigroup X with τ_X -lim $x_i = x$ (convergence in the topology τ_X of X). Then $x = \sup\{x_i: i \in I\}$.

PROOF. We set $E_i = \{y \in X : y \ge x_i\}$ for every $i \in I$, hence $x \in \overline{E_i} = E_i$ (by $\overline{E_i}$ we denote the closure of E_i in X), namely $x \ge x_i$ for every $i \in I$. Moreover let z be an element of X so that:

$$x_i \leq z$$
, for any $i \in I$.

Thus by the fact that the set $F = \{y \in X : y \leq z\}$ is τ_X -closed and hypothesis, one similarly has, $x \in \overline{F} = F$, which proves the assertion. Next the topology τ_X is called σ -compatible with the partial ordering if every majorised increasing sequence in X converges relative to the topology τ_X .

Now the function $m: H \to X$ is a τ_X -measure on the ring H, if m is positive on H and m is σ -additive on H with respect to topological convergence in X. The definitions and results of absolute continuity and singularity are similar as above.

In particular we obtain.

THEOREM 4.2. Let the τ_X -measure $m: S \to X$ and the τ_Y -measure $l: S \to Y$ on the σ -ring S. Suppose that Y is a monotone complete of the countable type partially ordered topological semigroup and the topology τ_Y is σ -compatible with the partial ordering. Then there exist unique τ_Y -measures $l_i: S \to Y$, i = 1, 2, such that:

$$l = l_1 + l_2, \ l_1 \ll m, \ l_2 \perp m, \ l_1 \perp l_2.$$

The proof of the Theorem 4.2 follows from Lemma 4.1 and Theorem 3.2.

References

1. S. K. Berberian, Measure and integration, Macmillan, New York, 1965.

2. R. Cristescu, Integrarea în spații semiordonate, Acad. Repub. Pop. Romîne. Bul. Şti. Sect. Şti. Mat. Fiz. 4 (1952), 291-310.

3. W. Hackenbroch, Zum Radon-Nikodymschen Satz fur positive Vectormasse, Math. Ann. 206 (1973), 63-65.

4. P. R. Halmos, Measure theory, Van Nostrand, Princeton, N. J., 1950.

5. R. A. Johnson, On the Lebesgue decomposition theorem, Proc. Amer. Math. Soc. 18 (1967), 628-632.

6. P. K. Pavlakos, *Measures and integrals in ordered topological groups*, Thesis, University of Athens, 1972.

7. A. Peressini, Ordered topological vector spaces, Harper and Row, New York, 1967.

8. M. Sion, A theory of semigroup-valued measures, Lecture Notes in Math., vol. 355, Springer-Verlag, Berlin and New York, 1973.

9. T. Traynor, Differentiation of group-valued outer measures, Thesis, University of British Columbia, 1969.

10. ____, Decomposition of group-valued additive set functions, Ann. Inst. Fourier (Grenoble) 22 (1972), 131-140.

11. B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff, Groningen, 1967.

12. M. J. D. Wright, Stone-algebra-valued measures and integrals, Proc. London Math. Soc. 19 (1969), 107-122.

13. _____, Vector lattice measures on locally compact spaces, Math. Z. 120 (1971), 193-203.

14. _____, Measures with values in a partially ordered vector space, Proc. London Math. Soc. 25 (1972), 675-688.

DEPARTMENT OF MATHEMATICAL ANALYSIS, ATHENS UNIVERSITY, PANEPISTEMIOPOLIS, ATHENS 621, GREECE