A SELECTION THEOREM FOR MULTIFUNCTIONS

H. SARBADHIKARI

ABSTRACT. In this paper the following theorem is proved. X is any set, H is a family of subsets of X which is λ -additive, λ -multiplicative and satisfies the λ -WRP for some cardinal $\lambda > \aleph_0$. Suppose Y is a regular Hausdorff space of topological weight $\leq \lambda$ such that given any family of open sets, there is a subfamily of cardinality $< \lambda$ with the same union. Let $F: X \to \mathbb{C}(Y)$, where $\mathbb{C}(Y)$ is the family of nonempty compact subsets of Y, satisfy $\{x: F(x) \cap C \neq \emptyset\} \in H$ for any closed subset C of Y. Then F admits a $(H \cap H^c)_{\lambda}$ -measurable selector.

1. Introduction. Let X be any set, H a family of subsets of X and τ any cardinal. We say that H is τ -additive (τ -multiplicative) if whenever $\{A_{\alpha}: \alpha < \beta\} \subseteq H$, where $\beta < \tau$, $\bigcup_{\alpha < \beta} A_{\alpha} (\bigcap_{\alpha < \beta} A_{\alpha}) \in H$. H^c is the family of subsets of X whose complements belong to H and H_{τ} is the smallest τ -additive family containing H. H is said to satisfy the τ -weak reduction principle (τ -WRP) if given $\{A_{\alpha}: \alpha < \beta\} \subseteq H$, such that $\bigcup_{\alpha < \beta} A_{\alpha} = X$, where $\beta < \tau$, there exists a pairwise disjoint family of sets $\{B_{\alpha}: \alpha < \beta\} \subseteq H$ satisfying $B_{\alpha} \subseteq A_{\alpha}$ for all α and $\bigcup_{\alpha < \beta} B_{\alpha} = X$. \aleph_0 and \aleph_1 are used to denote the first infinite ordinal and the first uncountable ordinal respectively. (Note that cardinals are considered as initial ordinals.)

If X is any set, **H** a family of subsets of X and Y a topological space, then a function f on X into Y is called **H**-measurable if $f^{-1}(U) \in \mathbf{H}$ for every open subset U of Y. f is called a selector for a multifunction F on X into the family of nonempty subsets of Y if $f(x) \in F(x)$ for all $x \in X$. If $A \subseteq X \times Y$ for any sets X, Y, then A^x denotes the subset of Y given by $\{y: (x, y) \in A\}$. Π_1 denotes the projection to the first coordinate on $X \times Y$.

In this paper we prove the following:

THEOREM. Let X be any set, **H** a family of subsets of X which is λ -additive, λ -multiplicative and satisfies the λ -WRP for some cardinal $\lambda > \aleph_0$. Suppose Y is a regular Hausdorff space of topological weight $\leq \lambda$ such that given any family of open sets in Y, there is a subfamily of cardinality $< \lambda$ with the same union. Let F: $X \to C(Y)$, where C(Y) is the family of nonempty compact subsets of Y, satisfy $\{x: F(x) \cap C \neq \emptyset\} \in \mathbf{H}$ for any closed subset C of Y. Then F admits a $(\mathbf{H} \cap \mathbf{H}^c)_{\lambda}$ -measurable selector.

Received by the editors October 12, 1977.

AMS (MOS) subject classifications (1970). Primary 04A05; Secondary 54C60, 54C65.

Key words and phrases. τ -additive family of sets, τ -multiplicative family of sets, τ -weak reduction principle, H-measurable function, selector.

By putting $\lambda = \aleph_1$ we can deduce the following theorem of Sion: Let **H** be a family of subsets of a set X and Y a regular T_1 space of topological weight $\langle \aleph_1$ such that each family of open subsets of Y admits a countable subfamily with the same union. Let $F: X \to \mathbb{C}(Y)$ be such that $\{x: F(x) \cap C \neq \emptyset\} \in \mathbb{H}$ for every closed set C in Y. Then F admits a $\sigma(\mathbb{H})$ -measurable selector where $\sigma(\mathbb{H})$ denotes the smallest σ -algebra containing \mathbb{H} .

2. Proof.

LEMMA. Let X, Y, H and F be as in the theorem. Let $\{U_{\alpha}: \alpha \text{ is a successor} ordinal < \lambda\}$ be an open base for Y such that $U_{\alpha} \neq \emptyset$ for any α . Then there exists a family $\{A_{\alpha}: \alpha < \lambda\}$ of subsets of $X \times Y$ satisfying the following:

(i) For each α and $x, \emptyset \neq A_{\alpha}^{x} \subseteq F(x)$ and A_{α}^{x} is compact.

(ii) For each α , $\{x: A^x_{\alpha} \cap C \neq \emptyset\} \in \mathbf{H}$ if $C \subseteq Y$ is closed.

(iii) If $\alpha < \beta$, $A_{\beta} \subseteq A_{\alpha}$ for all α and β .

(iv) If α is a successor ordinal, then there exists $B_{\alpha} \in \mathbf{H} \cap \mathbf{H}^{c}$ such that

$$\left(X \times \overline{U}_{\alpha}\right) \cap A_{\alpha} = \left(B_{\alpha} \times \overline{U}_{\alpha}\right) \cap A_{\alpha} = \left(B_{\alpha} \times Y\right) \cap A_{\alpha}.$$

PROOF. We define the A_{α} 's by induction as follows: $A_0 = \bigcup_x (\{x\} \times F(x))$. Suppose A_{β} is defined for all $\beta < \alpha$.

Case 1. $\alpha = \beta + 1$ for some β .

For any successor ordinal γ , let $D_{\gamma}^{\beta} = \{x : A_{\beta}^{x} \cap \overline{U}_{\gamma} \neq \emptyset\}$. By induction hypothesis, $\underline{D}_{\gamma}^{\beta} \in \mathbf{H}$. Now $X - \overline{U}_{\beta+1} = \bigcup \{\overline{U}_{\gamma} : \overline{U}_{\gamma} \subseteq X - \overline{U}_{\beta+1}\} = \bigcup \{U_{\gamma} : \overline{U}_{\gamma} \subseteq X - \overline{U}_{\beta+1}\}$. Let $\{U_{\gamma} : \gamma \in \Gamma_{\beta}\}$ be a subfamily of $\{U_{\gamma} : \overline{U}_{\gamma} \subseteq X - \overline{U}_{\beta+1}\}$ such that cardinality of $\Gamma_{\beta} < \lambda$ and $\bigcup \{U_{\gamma} : \gamma \in \Gamma_{\beta}\} = \bigcup \{U_{\gamma} : \overline{U}_{\gamma} \subseteq X - \overline{U}_{\beta+1}\}$. Thus

$$\bigcup_{\gamma \in \Gamma_{\beta}} U_{\gamma} = \bigcup_{\gamma \in \Gamma_{\beta}} \overline{U}_{\gamma} = X - \overline{U}_{\beta+1}.$$

If $x \notin D_{\beta+1}^{\beta}$, $A_{\beta}^{x} \cap \overline{U}_{\beta+1} = \emptyset$ and hence $A_{\beta}^{x} \cap \overline{U}_{\gamma} \neq \emptyset$ for some $\gamma \in \Gamma_{\beta}$. Hence $x \in D_{\gamma}^{\beta}$ for some $\gamma \in \Gamma_{\beta}$. Thus $X = D_{\beta+1}^{\beta} \cup \{D_{\gamma}^{\beta}: \gamma \in \Gamma_{\beta}\}$. By λ -WRP of **H**, find a pairwise disjoint family of sets $B_{\beta+1}^{\beta}, \{B_{\gamma}^{\beta}: \gamma \in \Gamma_{\beta}\}$ in **H** such that $B_{\beta+1}^{\beta} \subseteq D_{\beta+1}^{\beta}$, $B_{\gamma}^{\beta} \subseteq D_{\gamma}^{\beta}$ for $\gamma \in \Gamma_{\beta}$ and $B_{\beta+1}^{\beta} \cup \bigcup_{\gamma \in \Gamma_{\beta}} B_{\gamma}^{\beta} = X$. Clearly, $B_{\beta+1}^{\beta} \in \mathbf{H} \cap \mathbf{H}^{c}$.

Define

$$A_{\beta+1} = \left(\left(B_{\beta+1}^{\beta} \times \overline{U}_{\beta+1} \right) \cup \bigcup_{\gamma \in \Gamma_{\beta}} \left(B_{\gamma}^{\beta} \times \overline{U}_{\gamma} \right) \right) \cap A_{\beta}$$

and $B_{\beta+1} = B_{\beta+1}^{\beta}$. (i), (iii) and (iv) are clearly satisfied. To check (ii), let $C \subseteq Y$ be closed. Then $\{x: A_{\beta+1}^x \cap C \neq \emptyset\} = \{x: x \in B_{\beta+1}^{\beta} \text{ and } A_{\beta}^x \cap \overline{U}_{\beta+1} \cap C \neq \emptyset\} \cup \bigcup_{\gamma \in \Gamma_{\beta}} \{x: x \in B_{\gamma}^{\beta} \text{ and } A_{\beta}^x \cap \overline{U}_{\gamma} \cap C \neq \emptyset\}$. As **H** is λ -multiplicative (and hence \aleph_0 -multiplicative) and λ -additive, using the induction hypothesis, we see that $\{x: A_{\beta+1}^x \cap C \neq \emptyset\} \in \mathbf{H}$.

Case 2. α is a limit ordinal.

Let $A_{\alpha} = \bigcap_{\beta < \alpha} A_{\beta}$. As $\emptyset \neq A_{\beta}^{x} \subseteq F(x)$ for $\beta < \alpha$, each A_{β}^{x} is compact

and $\{A_{\beta}^{x}: \beta < \alpha\}$ has the finite intersection property by (iii), it follows that $\emptyset \neq A_{\alpha}^{x} \subseteq F(x)$ and A_{α}^{x} is compact. Clearly, (iii) is satisfied and (iv) does not need any verification as α is not a successor ordinal.

To check (ii), let $C \subseteq Y$ be closed.

$$\{x: A_{\alpha}^{x} \cap C \neq \emptyset\} = \left\{x: \bigcap_{\beta < \alpha} A_{\beta}^{x} \cap C \neq \emptyset\right\}$$
$$= \left\{x: \bigcap_{\beta < \alpha} (A_{\beta}^{x} \cap C) \neq \emptyset\right\} = \bigcap_{\beta < \alpha} \{x: A_{\beta}^{x} \cap C \neq \emptyset\}.$$

The last equality is obtained by using the compactness of $A_{\beta}^{x} \cap C$, $\beta < \alpha$. As $\alpha < \lambda$ and $\{x: A_{\beta}^{x} \cap C \neq \emptyset\} \in \mathbf{H}$ for $\beta < \alpha$ by induction hypothesis, $\{x: A_{\alpha}^{x} \cap C \neq \emptyset\} \in \mathbf{H}$ by λ -multiplicativity of \mathbf{H} .

This completes the proof of the lemma.

PROOF OF THE THEOREM. Let U_{α} , B_{α} , α is a successor ordinal $< \lambda$ and A_{α} , $\alpha < \lambda$, be as in the lemma. Put $G = \bigcap_{\alpha < A} A_{\alpha}$.

Step 1. G is the graph of a function f and f is a selector for F.

By (i) and (iii), $\emptyset \neq G^x \subseteq F(x)$ for all x. We show that for all x, G^x is a singleton. If not, let there exist points (x, y), (x, z) in G where $y \neq z$. Find a basic open set $U_{\alpha} \subseteq Y$ such that $y \in U_{\alpha} \subseteq \overline{U_{\alpha}} \subseteq X - \{z\}$. As $(x, y) \in G \subseteq A_{\alpha}$, it follows that $(x, y) \in (X \times \overline{U_{\alpha}}) \cap A_{\alpha} = (B_{\alpha} \times \overline{U_{\alpha}}) \cap A_{\alpha}$, α being a successor ordinal. Thus $x \in B_{\alpha}$ and hence $(x, z) \in (B_{\alpha} \times Y) \cap A_{\alpha} = (B_{\alpha} \times \overline{U_{\alpha}}) \cap A_{\alpha} = (B_{\alpha} \times \overline{U_{\alpha}}) \cap A_{\alpha}$. Therefore $z \in \overline{U_{\alpha}}$ which is a contradiction. Define f(x) = y if $\{y\} = G^x$.

Step 2. We now have to show that the function $f: X \to Y$ is $(\mathbf{H} \cap \mathbf{H}^c)_{\lambda}$ -measurable.

Let $V \subseteq Y$ be open. $V = \bigcup \{ \overline{U}_{\alpha} : \overline{U}_{\alpha} \subseteq V \} = \bigcup \{ U_{\alpha} : \overline{U}_{\alpha} \subseteq V \}$. There exists a subfamily $\{ U_{\alpha} : \alpha \in \Gamma \}$ of $\{ U_{\alpha} : \overline{U}_{\alpha} \subseteq V \}$ such that cardinality of $\Gamma < \lambda$ and $\bigcup_{\alpha \in \Gamma} U_{\alpha} = V$. Thus $\bigcup_{\alpha \in \Gamma} \overline{U}_{\alpha} = V$. Hence

$$f^{-1}(V) = \bigcup_{\alpha \in \Gamma} f^{-1}(\overline{U}_{\alpha}) = \bigcup_{\alpha \in \Gamma} \left(\prod_{1} \left(\left(X \times \overline{U}_{\alpha} \right) \cap G \right) \right).$$

It is enough to show that $\Pi_1((X \times \overline{U}_{\alpha}) \cap G) \in \mathbf{H} \cap \mathbf{H}^c$ for any successor ordinal α .

Fix α .

$$\Pi_{1}\left(\left(X \times \overline{U}_{\alpha}\right) \cap G\right) = \Pi_{1}\left(\left(X \times \overline{U}_{\alpha}\right) \cap \bigcap_{\gamma < \lambda} A_{\gamma}\right)$$

We first note the $\prod_{I}((X \times \overline{U}_{\alpha}) \cap \bigcap_{\gamma < \lambda} A_{\gamma}) = \bigcap_{\gamma < \lambda} \prod_{I}((X \times \overline{U}_{\alpha}) \cap A_{\gamma})$. Clearly,

$$\Pi_{\mathbf{I}}\Big((X \times \overline{U}_{\alpha}) \cap \bigcap_{\gamma < \lambda} A_{\gamma}\Big) \subseteq \bigcap_{\gamma < \lambda} \Pi_{\mathbf{I}}\Big((X \times \overline{U}_{\alpha}) \cap A_{\gamma}\Big).$$

Let $x \in \bigcap_{\gamma < \lambda} \prod_{i} ((X \times \overline{U}_{\alpha}) \cap A_{\gamma})$. Then for all $\gamma < \lambda$, $A_{\gamma}^{x} \cap \overline{U}_{\alpha} \neq \emptyset$. As

 $A_{\gamma}^{x} \cap \overline{U}_{\alpha}$ is compact for each $\gamma < \lambda$, using (iii), we see that $\bigcap_{\gamma < \lambda} (A_{\gamma}^{x} \cap \overline{U}_{\alpha}) \neq \emptyset$ so that $x \in \prod_{1} ((X \times \overline{U}_{\alpha}) \cap \bigcap_{\gamma < \lambda} A_{\gamma})$.

Again, using (iii), we obtain

$$\bigcap_{\gamma<\lambda}\Pi_{I}((X\times\overline{U}_{\alpha})\cap A_{\gamma})=\bigcap_{\alpha<\gamma<\lambda}\Pi_{I}((X\times\overline{U}_{\alpha})\cap A_{\gamma})$$

Hence $\prod_1((X \times \overline{U}_{\alpha}) \cap G) = \bigcap_{\alpha \leq \gamma < \lambda} \prod_1((X \times \overline{U}_{\alpha}) \cap A_{\gamma})$. We next prove that

$$\bigcap_{\alpha \leq \gamma < \lambda} \Pi_1 \left(\left(X \times \overline{U}_{\alpha} \right) \cap A_{\gamma} \right) = \Pi_1 \left(\left(X \times \overline{U}_{\alpha} \right) \cap A_{\alpha} \right)$$

Clearly, $\bigcap_{\alpha \leqslant \gamma < \lambda} \prod_{1} ((X \times \overline{U}_{\alpha}) \cap A_{\gamma}) \subseteq \prod_{1} ((X \times \overline{U}_{\alpha}) \cap A_{\alpha})$. Let

$$x \in \Pi_1((X \times U_\alpha) \cap A_\alpha) = \Pi_1((B_\alpha \times Y) \cap A_\alpha)$$

(by (iv)). Then $x \in B_{\alpha}$ and hence $A_{\alpha}^{x} \subseteq \overline{U}_{\alpha}$. If $\alpha \leq \gamma < \lambda$, $\emptyset \neq A_{\gamma}^{x} \subseteq A_{\alpha}^{x} \subseteq \overline{U}_{\alpha}$ so that $A_{\gamma}^{x} \cap \overline{U}_{\alpha} \neq \emptyset$. Hence $x \in \Pi_{1}((X \times \overline{U}_{\alpha}) \cap A_{\gamma})$ for $\alpha \leq \gamma < \lambda$. Thus

$$\Pi_1((X \times \overline{U}_{\alpha}) \cap G) = \Pi_1((X \times \overline{U}_{\alpha}) \cap A_{\alpha})$$
$$= \Pi_1((B_{\alpha} \times Y) \cap A_{\alpha}) = B_{\alpha} \in \mathbf{H} \cap \mathbf{H}^c.$$

COROLLARY. If X, Y, H are as in the theorem and if $F: X \to \mathbb{C}(Y)$ is such that $\{x: F(x) \cap U \neq \emptyset\} \in \mathbb{H}$ for any open $U \subseteq Y$, then F admits a $(\mathbb{H} \cap \mathbb{H}^c)_{\lambda}$ -measurable selector.

PROOF. Let $\{U_{\alpha}: \alpha < \lambda\}$ be a base for Y consisting of nonempty open sets and let $C \subseteq Y$ be closed. Then $Y - C = \bigcup \{\overline{U}_{\alpha}: \overline{U}_{\alpha} \subseteq Y - C\} = \bigcup \{U_{\alpha}: \overline{U}_{\alpha} \subseteq Y - C\}$. Let $\{U_{\alpha}: \alpha \in \Gamma\}$ be a subfamily of $\{U_{\alpha}: \overline{U}_{\alpha} \subseteq Y - C\}$ which has cardinality $< \lambda$ and satisfying $\bigcup_{\alpha \in \Gamma} U_{\alpha} = Y - C$. Clearly, $\bigcup_{\alpha \in \Gamma} \overline{U}_{\alpha} = Y - C$.

Now as F(x) is compact, $F(x) \subseteq Y - C$ if and only if there exist $\alpha_1, \ldots, \alpha_n \in \Gamma$ such that $F(x) \subseteq \bigcup_{i=1}^n U_{\alpha_i} \subseteq \bigcup_{i=1}^n \overline{U}_{\alpha_i} \subseteq Y - C$. Thus

$$\{x: F(x) \subseteq Y - C\} = \bigcup_{n} \bigcup_{(\alpha_1, \dots, \alpha_n)} \left\{ x: F(x) \cap \bigcap_{i=1}^n \overline{U}_{\alpha_i}^c = \emptyset \right\}$$

$$\in \left((\mathbf{H}^c)_{\lambda} \right)_{\aleph_1} = \left(\mathbf{H}^c \right)_{\lambda} = \mathbf{H}^c$$

as **H** is λ -multiplicative. Hence $\{x: F(x) \cap C \neq \emptyset\} \in \mathbf{H}$. Now we can invoke the theorem.

3. Acknowledgement. I am grateful to Dr. Ashok Maitra for his suggestions.

References

1. A. Maitra and B. V. Rao, Selection theorems for partitions of Polish spaces, Fund. Math. 93 (1976), 47-56.

2. M. Sion, On uniformization of sets in topological spaces, Trans. Amer. Math. Soc. 96 (1960), 237-245.

STATISTICS AND MATHEMATICS DIVISION, INDIAN STATISTICAL INSTITUTE, CALCUTTA 700 035, INDIA