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A NOTE ON THE COMBINATORIAL PRINCIPLES 0(F)

KEITH J. DEVLIN

Abstract. Shelah has proved that 0 does not imply that 0(E) holds for

every stationary set £ C to,. We prove that, in the other direction, whenever

0(E) holds there are disjoint stationary sets F, G C E such that both 0(F)

and 0(G) hold.

1. Introduction. Recall that if E Q ux, 0(E) asserts the existence of a

sequence (Sa\a G F) such that Sa Ç a and, whenever X Cux, then the set

{aGF|A'na = 5'a}is stationary. 0 is the principle 0(ux). For background

information we refer the reader to our paper [1].

It was open for several years whether 0 implies that 0(F) holds for any

stationary set F Ç «,. The main reason why it was thought by some that this

was the case was that the proof of 0 from V = L is almost identical to the

proof of each instance of 0(F) from V — L. However, it was finally proved

by Shelah in [3] that it is possible for there to be disjoint stationary sets E and

F such that 0(F) holds (whence 0 holds, of course) and 0(F) fails. Shelah's

proof uses a new forcing technique. We were subsequently able to find a

proof using the well-known technique of iterated Souslin forcing. Our proof

appears in [2].

Now, in both the Shelah proof and our proof mentioned above, one fixes a

pair E, F of disjoint stationary sets in advance and then force to obtain 0(F)

and "10(F) in a boolean extension, keeping F and F stationary. Hence the

two proofs do not tell us whether 0 is strictly weaker than all nontrivial

instances of 0(F). Nontrivial? Well, it is clear that if F Ç w, contains a

closed and unbounded set, then 0(F) and 0 are equivalent. But what if

E c ux is both stationary and co-stationary? This is what we mean by the

nontrivial case. In this paper we show that 0 does in fact imply many

"nontrivial" instances of 0(F).

2. The result. Our proof depends upon the following result, which has been

known to us for many years.

Let i denote the set of all subsets, F, of w, for which 0(F) fails.

2.1 Lemma. 3 is a countably complete ideal on ux.

Proof. Clearly, if F G í and F ç F, then F G í. We show that if
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E = U En,
71=0

where £„€$,»-0,1,2,..., then E E 5.

Let (Sa\a E E) be such that Sa Q a. We show that (Sa\a ££) cannot

be a 0(E) sequence, which proves the lemma, of course.

Fix some bijection

j: w, X <o«-><ü|,

such that whenever a £ w, is a limit ordinal, then

j\ (a X to): a X u<h> a.

For a E E, n E to, set

SZ={iEcx\j(H,n)ESa}.

Since En E §, (S„\a E En~) is not a 0(Fn)-sequence, so we can find a set

Xn C ux and a closed unbounded set C„ Qux such that

(i) a E C„ => lim(a);

(ii) aec,n£^Ji„na^ Sa".

Let C = D ,f=oQ- Then C is closed and unbounded in to, and:

(iii) a E C -> lim(a);

(iv) «ecnf^i.na^i;.
Define X Qwx by X = {/(£, zz)|£ elj. We complete the proof by

showing that

cxECnE^Xna¥=Sa.

Let a E C n E. Pick n so that a E E„. Suppose that X n a = Sa. Then,

since lim(a),

S; = {I G a|/(|, zz) E Sa } = {I E «1/(4, n) E X n «}

-{*e «,!/(£ «) 6tY) n«

= A^ n a,   contrary to (iv).   □

Remark. Shelah has observed that 5 is in fact a normal ideal.

2.2 Theorem. Assume 0(E). Then there are disjoint stationary sets F, G Ç

E such that 0(F) and 0(G) both hold.

Proof. Let

9E = [E n F\F E i}.

By 2.1, á£ is a countably complete ideal on E. Since 0(F) holds, $E is clearly

nonprincipal. Since w, is not a measurable cardinal (i.e. since we know that «,

cannot carry a nonprincipal, countably complete prime ideal) there must be a

set F Ç F such that F,E - F & 9E. Thus 0(F) and 0(F - F) hold.   □

We finish with two remarks. Firstly, since no countably complete ideal on

to, can be N,-saturated, the above proof shows that, in fact, 0 implies the

existence of a family Ea, a < w,, of disjoint stationary sets such that 0(Fo)
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holds for each a. Secondly, we may replace w, in Theorem 2.2 by any

uncountable regular cardinal k. The proof is the same except when k is a

measurable cardinal. In this case we use the fact that no /c-complete prime

ideal on k can be second-order definable.
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