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ON ROBINSON'S \ CONJECTURE

ROGER W. BARNARD

Abstract. In 1947, R. Robinson conjectured that if / is in S, i.e. a

normalized univalent function on the unit disk, then the radius of univa-

lence of [zf(z)]'/2 is at least ~. He proved in that paper that it was at least

.38. The conjecture has been shown to be true for most of the known

subclasses of S. This author shows through use of the Grunski inequalities,

that the minimum lower bound over the class S lies between .49 and .5.

Introduction. Let 6B denote the class of analytic functions on the unit disk

U = {z: \z\ < 1}. Let S denote the univalent functions/in éE normalized by

/(0) = 1 - /'(0) = 0. Denote by K, S*, C, and Sp the standard subclasses of

S consisting of functions that are convex starlike, close to convex and

spirallike respectively. For a subclass X (possibly a singleton) of & let rs(X)

denote the minimum radius of univalence over all functions / in X. We use

corresponding notation for the other subclasses of S. For example rsA[X)

denotes the minimum radius of starlikeness over all functions/in X.

For a function/in S define the operator r: 5 -» & by Tf = (zf)±. In 1947

R. Robinson [10] considered the problem of determining rs[r(5)]. Robinson

observed that for each/ in S, [T(f)]' =£ 0 for |z| < \. He also noted that for

the Koebe function k, k(z) = z(l - z)"2, rs(k) = rs,(k) = \, which implies

rs[r(5)] < \. He in fact conjectured that z-s[r(S)] = \. He was able to show

that rs.[T(S)] > .38.

There have been a number of papers (e.g. [2], [3], [6], [7], [8]) on the

connection between the operator Y and various subclasses of S. In these

papers it has been shown that

rK[T(K)] = r5.[T(S*)] = rc[T(C)] = rSp[T(Sp)] =\

and that T preserves Rogosinski's class of typically real functions (not

necessarily univalent) up to |z| <\. It was observed in [2] that with the

exception of the result z-Sp[r(Sp)] = \ these results follow directly from the S.

Ruscheweyh-T. Sheil-Small theory [11]. They proved that, except for Sp,

convolution by convex functions preserves the above subclasses of S. In order

to obtain the related results in [2] one need only observe that for f(z) =

T[f(z)] = h *f(z) - 2 [(« + l)/2]z" */(z) - 2 [(« + \)/2}anz"
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and that h(z) = (z - z2/2)(l — z)~2 is convex for |z| < \. As was shown in

[2] most of the results that had been obtained on generalizations of the

operator T on subclasses of S can also be obtained in a similar manner by the

appropriate modifications of h. However, for the entire class S, if we let

rQ = rc(S) «.80 from [5], it appears that the easily obtained lower bound for

rs[r(5')] of r0/2 «.41 is the most that can be obtained from the convolution

operator method. It does show that .41 < r5[r(S)] < \. In the present note

the author, through use of the Grunsky inequalities, is able to prove that

,49<rs[r(5)]<¿.

Proof of Main Result. To find a lower bound for rs[r(S)] we consider

the nonvanishing of

/(z) + z/'(z)-/(Q-TO)

By use of the minimum principle we may assume |z| = |f | < r. Since/is in S

we may divide through by [/(z) - f(l)\/(z - I). Thus it suffices to find the

largest r such that

Consider for /in S the Grunsky coefficients defined by letting

log    /('W«)   =     |     dnmZnr. (2)
Z        » n,m = 0

Putting f, z = 0 respectively, in (2) we obtain

f(z)      ~ /(£)      »
log - = 2 dn0z ",       log —p— = Z d0J .

Z n=0 * m=0

Hence

log -—z-■ log —- + log —z— +    Z   dnmzT-        (3)
Z        i Z i n,m=\

Although Grunsky's inequalities are usually stated in terms of the function F,

on \i\ > 1 defined by F(£) = l//(l/£), it is more convenient for our purposes

to express them directly in terms of / in S. To do this, we observe, by letting

z'= l/z,r = l/f,that

f(z)-m)      f(z)      /(o
log -=-log-log

= log

r       &  z    ~*  r

/(i/z')-/(i/n

/(i/z')/(i/rKr[(iA')-(i/n]

1//0/V) - i//(i/n      F(z')-F(n
-tag-73^-log      zW>

CO oo

= 2 4w,(*r,,(rrm - 2 ^-r.
n,m = l n,m = \
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Thus we can use the following form of Grunsky's inequalities (see

Pommerenke [9, p. 60]). For f in S and dnm defined by (2) we have for

arbitrary complex xn,

2»
71=1

Zu   "nmXn
m=\

<2 N
(4)

71=1

provided the last series converges. Now, differentiating (3) with respect to z

and f we see from the uniform convergence of the series in (3) for |z| = |f | <

r < 1 that

m-un   i-r   m      _£, nm   ■

and

-TO) f       TO) 1  +     Y     ZZlzi    Znfm.

/(I)-/(f)   *-r   /(f)      „í-l nm

Adding these two expressions and rearranging we obtain

1 + "77^—TTrT = "777T + ~77rT +  2  (" + ^K^T.   (5)/(*)-/(?)        /(/)        /(s)      „,m=i

Thus from (1) we need to find the largest r for which the right-hand side of

(5), which we denote by T(z, f), does not vanish for |z| = |f | < r. We have

by the use of Schwarz's inequality and (4) that

Í zf'iz)
> 2 min &e   —f¿

W-r /(*)

2 (» + «)or
n,m— 1

S Wz" s v^„mr
71= 1 771= 1

+ 2 v^r2 v^o"
771= 1 71= 1

ZfiZ)
> 2 min Sie   —ff-

00

2   /W2"
71=1

1/2

- Í 2 ™2m)
1/2 oo

2 m
771=1

2«L*"
71=1

2«
71=1

1/2

2<U"
771=1

1/2

,    Zf'iZ)
> 2min9le    fff^

M-' /(*) L (i - '2r

i1/2/       \
/      °° r27l    \

1/2
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L (1 - ñ'

> 2miniR.e
\z\ = r

(.22.        r2m

z5\z) 1/2

(6)

Since /is in S we have the well-known inequality

log £(£) ^- i       1 + r    ...
< lo8   \~~r ' lzl < r>

where, in fact, for each real a, and z, |z| = r < 1, there exists an/ in 5 such

that

log [z/'(z)//(z)] = e'alog [(1 + r)/(\ - r)]

(see Jenkins [4, p. 110]). Thus, if we let log [zf'(z)/f(z)] = Re'9, we can

assume R = log[(l + r)/(l - r)]. In order to find the minimum of (6) for all/

in S we consider

zf(z)
min  min <3le
feS   \z\-r

= minRe{exp(Äe'*)}

= min [exp(7? cos $)][cos(7? sin $)].

Thus, from (6), we need to find the largest r for which

min [exp(JR cos 3>)][cos (R sin $)] >-
1/2[-log(l-r2)]'/¿.    (7)

It is easy to see that the left-hand side of (7), call it LS, is a decreasing

function of r while the right-hand side of (7), call it RS, is an increasing

function of r. A computer checked calculation shows that for r =.490,

RS < .3379 while LS > .3393 where the mimmum value occurs when $ is

approximately 2.5 radians. We note that for r=.491, RS>.3398. Thus,

inequality (1) holds for all/ in S and r < .49. It follows that /•s[r(S')] >.49.
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