THE QUASI-MULTIPLIER CONJECTURE

KELLY MCKENNON

ABSTRACT. It is shown by example that the left and right multipliers of a C^* -algebra do not always span the linear space of quasi-multipliers.

Let A be the realization of a C*-algebra as a family of operators on a Hilbert space H, and let VN(A) be the closure of A in the weak operator topology. Write LM(A), RM(A), and QM(A) respectively for the families of all elements $v \in VN(A)$ such that respectively $vA \subset A$, $Av \subset A$, and $AvA \subset$ A. Then QM(A) may be identified with the family of all quasi-multipliers on A (see [2] and [1, Proposition 4.2]). Akemann and Pedersen [1] have raised the conjecture that QM(A) = LM(A) + RM(A). We develop here a counterexample.

Let *H* be the Hilbert space $l_2(\mathbf{R})$. For each $r \in \mathbf{R}$, write ξ_r for the characteristic function of the singleton $\{r\}$; π_r for the orthogonal projection of *H* onto the subspace generated by $\{\xi_r: t \ge r\}$; and write p_r for the projection complementary to π_r . Let B(H) be the set of all bounded operators on *H* and $B_0(H)$ the set of compact operators. For each $x \in B(H)$, let d(x) be the cardinality of an orthonormal basis for x(H).

Let A^- be the C^* -algebra $\{x \in B(H): \max\{d(p_0x), d(xp_0)\} \le \aleph_0\}$. From $B_0(H) \subset A^-$ follows that $VN(A^-) = B(H)$.

LEMMA 1. $LM(A^{-}) = \{v \in B(H): d(p_0v\pi_0) \le \aleph_0\}$ and $LM(A^{-}) + RM(A^{-}) = QM(A^{-}) = B(H).$

PROOF. If $d(p_0 \upsilon \pi_0) \leq \aleph_0$ and $x \in A^-$, then

$$d(p_0vx) \leq d(p_0v\pi_0x) + d(p_0vp_0x) \leq d(p_0v\pi_0) + d(p_0x) \leq \aleph_0$$

and

$$d(vxp_0) \leq d(xp_0) \leq \aleph_0$$

so $v \in LM(A^{-})$. Conversely, if $w \in LM(A^{-})$, then $w\pi_0 \in A^{-}$ so $d(p_0w\pi_0) \leq \aleph_0$.

Consider any $y \in B(H)$. Then $p_0(y\pi_0)^*\pi_0 = 0$ so $(y\pi_0)^* \in LM(A^-)$; hence $y\pi_0 \in RM(A^-)$. But clearly $yp_0 \in LM(A^-)$ so

$$y = yp_0 + y\pi_0 \in LM(A^-) + RM(A^-)$$
. Q.E.D.

Now let A^+ be the C^* -algebra

$$\big\{x\in B(H): \lim_{r\to\infty} \pi_r x = \lim_{r\to\infty} x\pi_r = 0\big\}.$$

Received by the editors November 22, 1977.

AMS (MOS) subject classifications (1970). Primary 46L05.

Again from $B_0(H) \subset A^+$ follows that $VN(A^+) = B(H)$.

LEMMA 2. Let $X = \{v \in B(H): (\forall t \in \mathbb{R}) \lim_{r \to \infty} \pi_r v p_t = 0\}$. Then $X = LM(A^+)$ and $LM(A^+) + RM(A^+) = B(H) = QM(A^+)$.

PROOF. Consider $v \in X$ and $x \in A^+$. Obviously $\lim_{r\to\infty} vx\pi_r = 0$. Further

$$\overline{\lim_{r\to\infty}} \|\pi_r vx\| \leq \overline{\lim_{t\to\infty}} \quad \overline{\lim_{r\to\infty}} (\|\pi_r v\pi_t x\| + \|\pi_r vp_t x\|) \\
\leq \overline{\lim_{t\to\infty}} \|v\| \|\pi_t x\| + \overline{\lim_{t\to\infty}} \quad \overline{\lim_{r\to\infty}} \|\pi_r vp_t\| \|x\| = 0.$$

Hence, $x \in LM(A^+)$. Conversely, for $w \in LM(A^+)$ and $t \in \mathbb{R}$, both p_t and wp_t are in A^+ so evidently $w \in X$.

Consider any $y \in B(H)$. Define v and w in B(H) by letting $v(\xi_u) = p_u y(\xi_u)$ and $w(\xi_u) = \pi_u y(\xi_u)$ for all $u \in \mathbb{R}$. Then y = v + w. Furthermore, for $t, r \in \mathbb{R}$ such that r > t, simple calculations show that $\pi_r v p_t = 0$ and $p_t w \pi_r = 0$. It follows that $v, w^* \in X$; hence $v \in LM(A^+)$ and $w \in RM(A^+)$. Q.E.D.

Now let $A = A^- \cap A^+$. Again $B_0(H) \subset A$ so VN(A) = B(H).

LEMMA 3. $LM(A) = LM(A^{-}) \cap LM(A^{+})$.

PROOF. That $LM(A^{-}) \cap LM(A^{+}) \subset LM(A)$ is trivial. Let $w \in LM(A)$ be arbitrary.

Assume $d(p_0w\pi_0) > \aleph_0$. Then, for some n > 0, $d(p_0wx_0p_n) > \aleph_0$ as well. Evidently π_0p_n is in A, so that $w\pi_0p_n$ is in A as well. In particular $w\pi_0p_n$ is in A^- so $d(p_0w\pi_0p_n) < \aleph_0$: an absurdity. It follows by Lemma 1 that $w \in LM(A^-)$.

Assume that, for some $t \in \mathbf{R}$, $\lim_{r\to\infty} \pi_r w p_t \neq 0$. Then, for some $\varepsilon > 0$ and each natural number *n*, there exist finite subsets $\{r(n; j)\}_{j=1}^{m(n)}$ and $\{s(n; j)\}_{j=1}^{m(n)}$ of *R* such that

$$|\alpha_n| = 1$$
 and $|\pi_n w p_t(\alpha_n)| \ge \varepsilon$

where $\alpha_n = \sum_{j=1}^{m(n)} r(n; j) \xi_{s(n;j)}$. Let τ be the orthogonal projection onto the subspace of H generated by the set of all the vectors $\xi_{s(n;j)}$. Evidently $\tau p_t = p_t \tau$ is in A. Hence $w p_t \tau$ is in A and, in particular, in A^+ as well. Thus

$$0 = \lim_{n} ||\pi_{n} w p_{t} \tau|| \geq \overline{\lim_{n}} ||\pi_{n} w p_{t} \tau(\alpha_{n})| \geq \varepsilon$$

since $\tau(\alpha_n) = \alpha_n$: an absurdity. It follows by Lemma 2 that $w \in LM(A^+)$. Q.E.D.

We note that, since evidently $QM(A^{-}) \cap QM(A^{+}) \subset QM(A)$, we have QM(A) = B(H).

THEOREM. $LM(A) + RM(A) \neq QM(A)$.

PROOF. Let $s \in QM(A)$ be the partial isometry: $s(\xi_t) = 0$ for $t \le 0$ and $s(\xi_t) = \xi_{-t}$ for $t \ge 0$. Assume s = v + w for $v \in LM(A)$ and $w \in RM(A)$. Then $w^* \in LM(A)$ so, by Lemma 2,

KELLY MCKENNON

$$0 = \lim_{r \to \infty} \pi_r w^* p_0 \quad \text{so} \quad \lim_{r \to \infty} p_0 w \pi_r = 0 \text{ as well.}$$

Choose r > 0 such that $||p_0w\pi_r|| < 1/2$. Since $s = p_0s\pi_0$, we have $s\pi_r = p_0s\pi_r = p_0v\pi_r + p_0w\pi_r$.

From Lemma 1, $d(p_0 v \pi_r) \le \aleph_0$. Thus $||s \pi_r - y|| \le 1/2$ for some operator y with countable rank: an absurdity. Q.E.D.

References

1. Charles A. Akemann and Gert K. Pederson, Complications of semi-continuity in C*-algebra theory, Duke Math. J. 40 (1973), 785-795.

2. Kelly McKennon, Quasi-multipliers, Trans. Amer. Math. Soc. 233 (1977), 105-123.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403

Current address: Department of Mathematics, Washington State University, Pullman, Washington 99163

260