THE QUASI-MULTIPLIER CONJECTURE

KELLY MCKENNON

Abstract

It is shown by example that the left and right multipliers of a C^{*}-algebra do not always span the linear space of quasi-multipliers.

Let A be the realization of a C^{*}-algebra as a family of operators on a Hilbert space H, and let $V N(A)$ be the closure of A in the weak operator topology. Write $L M(A), R M(A)$, and $Q M(A)$ respectively for the families of all elements $v \in V N(A)$ such that respectively $v A \subset A, A v \subset A$, and $A v A \subset$ A. Then $Q M(A)$ may be identified with the family of all quasi-multipliers on A (see [2] and [1, Proposition 4.2]). Akemann and Pedersen [1] have raised the conjecture that $Q M(A)=L M(A)+R M(A)$. We develop here a counterexample.

Let H be the Hilbert space $l_{2}(\mathbf{R})$. For each $r \in \mathbf{R}$, write ξ_{r} for the characteristic function of the singleton $\{r\} ; \pi_{r}$ for the orthogonal projection of H onto the subspace generated by $\left\{\xi_{t}: t \geqslant r\right\}$; and write p_{r} for the projection complementary to π_{r}. Let $B(H)$ be the set of all bounded operators on H and $B_{0}(H)$ the set of compact operators. For each $x \in B(H)$, let $d(x)$ be the cardinality of an orthonormal basis for $x(H)$.

Let A^{-}be the C^{*}-algebra $\left\{x \in B(H)\right.$: $\left.\max \left\{d\left(p_{0} x\right), d\left(x p_{0}\right)\right\} \leqslant \kappa_{0}\right\}$. From $B_{0}(H) \subset A^{-}$follows that $V N\left(A^{-}\right)=B(H)$.

Lemma 1. $L M\left(A^{-}\right)=\left\{v \in B(H): d\left(p_{0} v \pi_{0}\right) \leqslant \kappa_{0}\right\}$ and $L M\left(A^{-}\right)+$ $R M\left(A^{-}\right)=Q M\left(A^{-}\right)=B(H)$.

Proof. If $d\left(p_{0} v \pi_{0}\right) \leqslant \kappa_{0}$ and $x \in A^{-}$, then

$$
d\left(p_{0} v x\right) \leqslant d\left(p_{0} v \pi_{0} x\right)+d\left(p_{0} v p_{0} x\right) \leqslant d\left(p_{0} v \pi_{0}\right)+d\left(p_{0} x\right) \leqslant \kappa_{0}
$$

and

$$
d\left(v x p_{0}\right) \leqslant d\left(x p_{0}\right) \leqslant \kappa_{0}
$$

so $v \in L M\left(A^{-}\right)$. Conversely, if $w \in L M\left(A^{-}\right)$, then $w \pi_{0} \in A^{-}$so $d\left(p_{0} w \pi_{0}\right)$ $\leqslant \kappa_{0}$.

Consider any $y \in B(H)$. Then $p_{0}\left(y \pi_{0}\right)^{*} \pi_{0}=0$ so $\left(y \pi_{0}\right)^{*} \in L M\left(A^{-}\right)$; hence $y \pi_{0} \in R M\left(A^{-}\right)$. But clearly $y p_{0} \in L M\left(A^{-}\right)$so

$$
y=y p_{0}+y \pi_{0} \in L M\left(A^{-}\right)+R M\left(A^{-}\right) . \quad \text { Q.E.D. }
$$

Now let A^{+}be the C^{*}-algebra

$$
\left\{x \in B(H): \lim _{r \rightarrow \infty} \pi_{r} x=\lim _{r \rightarrow \infty} x \pi_{r}=0\right\} .
$$

Again from $B_{0}(H) \subset A^{+}$follows that $V N\left(A^{+}\right)=B(H)$.
Lemma 2. Let $X=\left\{v \in B(H):(\forall t \in \mathbf{R}) \lim _{r \rightarrow \infty} \pi_{r} v p_{t}=0\right\}$. Then $X=$ $L M\left(A^{+}\right)$and $L M\left(A^{+}\right)+R M\left(A^{+}\right)=B(H)=Q M\left(A^{+}\right)$.

Proof. Consider $v \in X$ and $x \in A^{+}$. Obviously $\lim _{r \rightarrow \infty} v x \pi_{r}=0$. Further

$$
\begin{aligned}
\overline{\lim }_{r \rightarrow \infty}\left\|\pi_{r} v x\right\| & \leqslant \varlimsup_{t \rightarrow \infty} \varlimsup_{r \rightarrow \infty}\left(\left\|\pi_{r} v \pi_{t} x\right\|+\left\|\pi_{r} v p_{t} x\right\|\right) \\
& \leqslant \varlimsup_{t \rightarrow \infty}\|v\|\left\|\pi_{t} x\right\|+\varlimsup_{t \rightarrow \infty} \varlimsup_{r \rightarrow \infty}\left\|\pi_{r} v p_{t}\right\|\|x\|=0 .
\end{aligned}
$$

Hence, $x \in L M\left(A^{+}\right)$. Conversely, for $w \in L M\left(A^{+}\right)$and $t \in \mathbf{R}$, both p_{t} and $w p_{1}$ are in A^{+}so evidently $w \in X$.

Consider any $y \in B(H)$. Define v and w in $B(H)$ by letting $v\left(\xi_{u}\right)=p_{u} y\left(\xi_{u}\right)$ and $w\left(\xi_{u}\right)=\pi_{u} y\left(\xi_{u}\right)$ for all $u \in \mathbf{R}$. Then $y=v+w$. Furthermore, for $t, r \in$ \mathbf{R} such that $r>t$, simple calculations show that $\pi_{r} v p_{t}=0$ and $p_{t} w \pi_{r}=0$. It follows that $v, w^{*} \in X$; hence $v \in L M\left(A^{+}\right)$and $w \in R M\left(A^{+}\right)$. Q.E.D.

Now let $A=A^{-} \cap A^{+}$. Again $B_{0}(H) \subset A$ so $V N(A)=B(H)$.
Lemma 3. $L M(A)=L M\left(A^{-}\right) \cap L M\left(A^{+}\right)$.
Proof. That $L M\left(A^{-}\right) \cap L M\left(A^{+}\right) \subset L M(A)$ is trivial. Let $w \in L M(A)$ be arbitrary.

Assume $d\left(p_{0} w \pi_{0}\right)>\kappa_{0}$. Then, for some $n>0, d\left(p_{0} w x_{0} p_{n}\right)>\kappa_{0}$ as well. Evidently $\pi_{0} p_{n}$ is in A, so that $w \pi_{0} p_{n}$ is in A as well. In particular $w \pi_{0} p_{n}$ is in A^{-}so $d\left(p_{0} w \pi_{0} p_{n}\right)<\kappa_{0}$: an absurdity. It follows by Lemma 1 that $w \in$ $L M\left(A^{-}\right)$.

Assume that, for some $t \in \mathbf{R}, \lim _{r \rightarrow \infty} \pi_{r} w p_{t} \neq 0$. Then, for some $\varepsilon>0$ and each natural number n, there exist finite subsets $\{r(n ; j)\}_{j=1}^{m(n)}$ and $\{s(n ; j)\}_{j=1}^{m(n)}$ of R such that

$$
\left|\alpha_{n}\right|=1 \quad \text { and } \quad\left|\pi_{n} w p_{t}\left(\alpha_{n}\right)\right| \geqslant \varepsilon
$$

where $\alpha_{n}=\sum_{j=1}^{m(n)} r(n ; j) \xi_{s(n ; j)}$. Let τ be the orthogonal projection onto the subspace of H generated by the set of all the vectors $\xi_{s(n ; j)}$. Evidently $\tau p_{t}=p_{t} \tau$ is in A. Hence $w p_{t} \tau$ is in A and, in particular, in A^{+}as well. Thus

$$
0=\lim _{n}\left\|\pi_{n} w p_{t} \tau\right\| \geqslant \varlimsup_{n}\left|\pi_{n} w p_{t} \tau\left(\alpha_{n}\right)\right| \geqslant \varepsilon
$$

since $\tau\left(\alpha_{n}\right)=\alpha_{n}$: an absurdity. It follows by Lemma 2 that $w \in L M\left(A^{+}\right)$. Q.E.D.

We note that, since evidently $Q M\left(A^{-}\right) \cap Q M\left(A^{+}\right) \subset Q M(A)$, we have $Q M(A)=B(H)$.

Theorem. $L M(A)+R M(A) \neq Q M(A)$.
Proof. Let $s \in Q M(A)$ be the partial isometry: $s\left(\xi_{t}\right)=0$ for $t \leqslant 0$ and $s\left(\xi_{t}\right)=\xi_{-t}$ for $t \geqslant 0$. Assume $s=v+w$ for $v \in L M(A)$ and $w \in R M(A)$. Then $w^{*} \in L M(A)$ so, by Lemma 2,

$$
0=\lim _{r \rightarrow \infty} \pi_{r} w^{*} p_{0} \text { so } \lim _{r \rightarrow \infty} p_{0} w \pi_{r}=0 \text { as well. }
$$

Choose $r>0$ such that $\left\|p_{0} w \pi_{r}\right\|<1 / 2$. Since $s=p_{0} s \pi_{0}$, we have $s \pi_{r}=p_{0} s \pi_{r}=p_{0} v \pi_{r}+p_{0} w \pi_{r}$.
From Lemma $1, d\left(p_{0} v \pi_{r}\right) \leqslant \kappa_{0}$. Thus $\left\|s \pi_{r}-y\right\| \leqslant 1 / 2$ for some operator y with countable rank: an absurdity. Q.E.D.

References

1. Charles A. Akemann and Gert K. Pederson, Complications of semi-continuity in C^{*}-algebra theory, Duke Math. J. 40 (1973), 785-795.
2. Kelly McKennon, Quasi-multipliers, Trans. Amer. Math. Soc. 233 (1977), 105-123.

Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Current address: Department of Mathematics, Washington State University, Pullman, Washington 99163

