THE BANACH-MAZUR DISTANCE BETWEEN THE TRACE CLASSES c_n^{μ}

NICOLE TOMCZAK-JAEGERMANN

ABSTRACT. The Banach-Mazur distance between $l_2^n \hat{\otimes} l_2^m$ and $l_2^n \hat{\otimes} l_2^m$ is shown to be of the order $\sqrt{\min(n,m)}$. Our proof yields that the distance between the trace classes c_p^n and c_q^n is of the same order as $d(l_p^n, l_q^n)$.

In this note we determine the distances between some tensor products of Euclidean spaces l_2^k , $k = 1, 2 \dots$ Let E, F be finite dimensional Banach spaces over the real field. The Banach-Mazur distance d(E, F) is defined as

$$\inf\{\|T\| \|T^{-1}\| \mid T \text{ is an isomorphism from } E \text{ onto } F\}.$$

In this note by $E \otimes F$ [resp. $E \otimes F$] we denote the algebraic tensor product $E \otimes F$ endowed with the greatest [resp. the least] norm such that $||e \otimes f|| = ||e|| ||f||$ for $e \in E$, $f \in F$. The space $l_2^n \otimes l_2^m$ with the norm

$$\left\|\sum_{ij} a_{ij} e_i \otimes f_j\right\| = \left(\sum_{ij} |a_{ij}|^2\right)^{1/2},$$

where $\{e_1, \ldots, e_n\}$, $\{f_1, \ldots, f_m\}$ are orthonormal bases for l_2^n and l_2^m respectively, is denoted by $HS(l_2^n, l_2^m)$ or simply HS.

THEOREM 1. Let n, m be positive integers with $n \leq m$. Then

$$(2\sqrt{e}\,)^{-1}\sqrt{n}\,\leqslant\,d\left(l_2^n\,\hat\otimes\,l_2^m,\,l_2^n\,\hat{\hat\otimes}\,l_2^m\right)\leqslant\,10\sqrt{n}\;.$$

PROOF. We begin with the upper estimate of the distance $d(l_2^n \hat{\otimes} l_2^m, l_2^n \hat{\otimes} l_2^m)$. The argument given below works only for $n \ge 36$. However if n < 36 and $i: l_2^n \hat{\otimes} l_2^m \to l_2^n \hat{\otimes} l_2^m$ denotes the formal identity map, then $||i|| \le 1$ and $||i^{-1}|| \le n \le 10\sqrt{n}$.

We shall construct the isomorphism $T: l_2^n \otimes l_2^m \to l_2^n \hat{\otimes} l_2^m$ in the form $T = j^* \circ u \circ j$ where $j: l_2^n \otimes l_2^m \to \operatorname{HS}(l_2^n, l_2^m)$ is the natural embedding and u is an isometry of the nm-dimensional Hilbert space $\operatorname{HS}(l_2^n, l_2^m)$. It is easy to check that $||j^{-1}|| \leq \sqrt{n}$. Since $(j^*)^{-1} = (j^{-1})^*$ we obtain

$$||T^{-1}|| \le ||j^{-1}|| \cdot ||u^{-1}|| \cdot ||(j^*)^{-1}|| \le n.$$

Thus the proof of the upper estimate will be complete if we find a T with $||T|| \le 10/\sqrt{n}$. This is done in the following proposition.

Received by the editors January 3, 1978.

AMS (MOS) subject classifications (1970). Primary 46B99.

Key words and phrases. Banach-Mazur distance, trace class, tensor products, cross norms.

PROPOSITION. Let μ denote the normalized Haar measure on the group G of all linear isometries of $HS(l_2^n, l_2^m)$. Assume that $m \ge n \ge 36$. Then

$$\mu\{u \in G | ||j^* \circ u \circ j|| > 10/\sqrt{n} \} < 1.$$

PROOF. Observe that the set E of the extreme points of the unit ball in $l_2^n \hat{\otimes} l_2^m$ equals $S_{n-1} \times S_{m-1}$ where S_{k-1} denotes the unit sphere in l_2^k . It follows from the duality between $l_2^n \hat{\otimes} l_2^m$ and $l_2^n \hat{\otimes} l_2^m$ that

$$||j^* \circ u \circ j|| = \sup\{|\langle j(z \otimes w), u(j(x \otimes y))\rangle| | (x, y), (z, w) \in E\},$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product in the space $HS(l_2^n, l_2^m)$. The latter expression is equal to the norm of the 4-linear form \tilde{u} on $l_2^n \times l_2^m \times l_2^n \times l_2^n$ defined by

$$\tilde{u}(x, y, z, w) = \langle j(z \otimes w), u(j(x \otimes y)) \rangle.$$

Pick 1/8-nets N_1 in S_{n-1} and N_2 in S_{m-1} and let $N=N_1\times N_2\times N_1\times N_2$. We may assume that card $N_1\leqslant e^{3n}$ and card $N_2\leqslant e^{3m}$. (This can be proved by a standard comparison of volumes argument, cf. e.g. [1, Lemma 2.4].) Thus card $N\leqslant e^{6nm}\leqslant e^{12m}$. Given $(x,y,z,w)\in E\times E$ pick $\xi=(x',y',z',w')\in N$ such that $||x-x'||,||y-y'||,||z-z'||,||w-w'||\leqslant 1/8$. One can check easily that

$$\left|\tilde{u}\left(x,y,z,w\right)-\tilde{u}\left(x',y',z',w'\right)\right|\leqslant\left(\frac{4}{8}\right)\left\|\tilde{u}\right\|,$$

and hence

$$\|\tilde{u}\| \leq \sup_{\xi \in N} |\tilde{u}(\xi)| + \frac{1}{2} \|\tilde{u}\|,$$

so that

$$\|\tilde{u}\| \leq 2 \sup_{\xi \in N} |\tilde{u}(\xi)|.$$

Observe that

$$\left\{u \in G \mid \|\tilde{u}\| > 10/\sqrt{n} \right\} \subseteq \left\{u \in G \mid \sup_{\xi \in N} |\tilde{u}(\xi)| > 5/\sqrt{n} \right\}$$
$$\subseteq \bigcup_{\xi \in N} \left\{u \in G \mid |\tilde{u}(\xi)| > 5/\sqrt{n} \right\}.$$

We shall use the estimate

$$v_{\xi} = \mu \left\{ u \in G | |\tilde{u}(\xi)| > a \right\} \leq 4 \exp(-a^2 \cdot nm/2)$$

valid for any $\xi \in E \times E$ and $0 < a \le 5/6$.

Let $a = 5/\sqrt{n}$. Since n > 36, we have $a \le 5/6$ and hence

$$\mu\left\{u \in G \mid \|\tilde{u}\| > 10/\sqrt{n}\right\} \le \operatorname{card} N \cdot v_{\xi} \le 4e^{12m}e^{-25m/2}$$
$$= 4e^{-m/2} \le 4e^{-18} < 1,$$

which is the desired estimate.

To estimate v_{ξ} observe that

$$v_{\xi} = \lambda \{ t \in S_{nm-1} | |\langle j(z \otimes w), t \rangle| > a \},$$

where λ denotes the (nm-1)-dimensional normalized Lebesgue measure on the sphere S_{nm-1} . By the formula 2.4 in [1] the latter number is smaller than

$$4 \exp(-(\sin^{-1}a)^2 nm/2) \le 4 \exp(-a^2 nm/2).$$

(The estimate in [1] requires that $\sin^{-1}a < 1$, but in our case $a \le 1 - 1/6 < \sin 1$.) This completes the proof of the proposition.

The lower estimate of $d(l_2^n \otimes l_2^m, l_2^n \otimes l_2^m)$ is obvious if one notes that the cotype 2 constant (cf. e.g. [1]) of the first space is $\leq 2\sqrt{e}$ (cf. [3]) while the second space contains an isometric copy of l_{∞}^n , hence its cotype 2 constant is $\geq \sqrt{n}$. This completes the proof of Theorem 1.

In the next theorem c_n^n denotes the tensor product $l_2^n \otimes l_2^n$ with the norm

$$||u||_p = \left(\operatorname{trace}(u^*r)^{p/2}\right)^{1/p} \text{ for } 1 \le p < \infty$$

and

$$||u||_{\infty}=||u||,$$

where $u \in l_2^n \otimes l_2^n$ is regarded as a linear operator in l_2^n . Thus c_2^n may be identified with $HS(l_2^n, l_2^n)$.

THEOREM 2. For arbitrary $1 \le p \le 2 \le q \le \infty$ one has

$$(2\sqrt{e})^{-1}n^{\alpha} \leqslant d(c_p^n, c_q^n) \leqslant 10n^{\alpha},$$

where $\alpha = \max(1/p - 1/2, 1/2 - 1/q)$.

PROOF. Assume that $1 \le q^* \le p \le 2$, where $q^* = (p-1)/p$. Then $\alpha = 1/2 - 1/q$. We shall prove that $d(c_p^n, c_q^n) \le 10^{2/p-1} n^{\alpha}$ and $d(c_p^n, c_q^n) \ge (2\sqrt{e})^{-1} n^{\alpha}$. The remaining cases follow from the identity

$$d(c_p^n, c_q^n) = d((c_p^n)^*, (c_q^n)^*) = d(c_{p^*}^n, c_{q^*}^n)$$

and the observation that $2/p - 1 \le 1$.

Let us estimate the norm $||T: c_{q^*}^n \to c_{p^*}^n||$, where T is the operator we have used in the proof of Theorem 1. We have

$$\begin{split} \|T: \, c_{q^*}^n \to c_{p^*}^n \| &\leq \|T: \, c_p^n \to c_{p^*}^n \| \\ &\leq \|T: \, c_1^n \to c_\infty^n \|^{2/p-1} \|T: \, c_2^n \to c_2^n \|^{2-2/p} \\ &\leq \left(10n^{-1/2}\right)^{2/p-1} = 10^{2/p-1} n^{1/2-1/p}. \end{split}$$

The interpolation theorem we have used in the last estimate can be found e.g. in [3].

On the other hand

$$\begin{aligned} \|T^{-1} \colon c_{p^{\bullet}}^{n} \to c_{q^{\bullet}}^{n}\| &\leq \|\operatorname{id} \colon c_{p^{\bullet}}^{n} \to c_{2}^{n}\| \cdot \|u^{-1} \colon c_{2}^{n} \to c_{2}^{n}\| \cdot \|\operatorname{id} \colon c_{2}^{n} \to c_{q^{\bullet}}^{n}\| \\ &\leq n^{1/p-1/2} \cdot 1 \cdot n^{1/2-1/q}. \end{aligned}$$

Thus we get

$$d(c_{p^*}^n, c_{q^*}^n) \leq ||T|| \cdot ||T^{-1}|| \leq 10^{2/p-1} n^{\alpha}.$$

The lower estimate of $d(c_p^n, c_q^n)$ uses the facts that the cotype 2 constant of c_p^n is $\leq 2\sqrt{e}$ (cf. [3]) and the cotype 2 constant of c_q^n is $\geq n^{\alpha}$. (The latter space contains an isometric copy of l_q^n .)

REMARK. It is well known that if either $1 \le p, q \le 2$ or $2 \le p, q \le \infty$, then

$$d(c_p^n, c_q^n) = n^{\beta}$$
 where $\beta = |1/p - 1/q|$.

The result mentioned in the abstract follows by comparing our results with those in [2].

The author would like to thank Professor T. Figiel for his help in preparing this note.

REFERENCES

- 1. T. Figiel, J. Lindenstrauss and V. Milman, The dimension of almost spherical section of convex bodies, Acta Math. 139 (1977), 52-94. (Russian)
- 2. V. Gurarii, M. Kadec and V. Macaev, On the distance between finite dimensional l_p spaces, Mat. Sb. 70 (1966), 481-489.
- 3. N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes S_n, Studia Math. 50 (1974), 163–182.

INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY, WARSAW, POLAND

Current address: Institute of Mathematics, Warsaw University, PKiN, 00901 Warsaw, Poland