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THE BANACH-MAZUR DISTANCE

BETWEEN THE TRACE CLASSES c/

NICOLE TOMCZAK-JAEGERMANN

Abstract. The Banach-Mazur distance between l2 ® l2 and l2 ® l2 is

shown to be of the order Vmin(«,m) . Our proof yields that the distance

between the trace classes c¡¡ and c¡¡ is of the same order as d(l£, l£).

In this note we determine the distances between some tensor products of

Euclidean spaces l2, k = 1, 2 ... . Let E, F be finite dimensional Banach

spaces over the real field. The Banach-Mazur distance d(E, F) is defined as

inf {|| T\\ \\T~X\\ | T is an isomorphism from E onto F j.

In this note by E <Ê> F [resp. E ® F] we denote the algebraic tensor product

E ® F endowed with the greatest [resp. the least] norm such that ||e ® /|| =

||e|| y/11 for e E E,f E F. The space /2" ® /2m with the norm

/ \'/2

s«,//®/; = Ski2   .
ij V  ij I

where  {ex, . . . , e„),   {/,, . . . ,/m)  are orthonormal  bases for l2   and l2

respectively, is denoted by HS(/2, l2) or simply HS.

Theorem 1. Let n, m be positive integers with n < m. Then

(2\Te )~lVn~ < d(l!¿ ® I?, /2" ê /2m ) < 10\6ï .

Proof. We begin with the upper estimate of the distance d(l2 ® l2, l2 ®

l2). The argument given below works only for n > 36. However if n < 36

and i: l2 <è l2 -* l2 ® l2 denotes the formal identity map, then ||/|| < 1 and

||i_1|| < n < 10V« .

We shall construct the isomorphism T: /2" <8> l2 -+ l2 ® l2 in the form

T = j*°u°j where/: /2" ® l? -* HS(/2", /2m) is the natural embedding and u

is an isometry of the «w-dimensional Hilbert space HS(/2, l2). It is easy to

check that ||/_1|| < Vñ . Since (/*)"' = (/"')♦ we obtain

H7'_1ll<IU"Il|-||"~1lMO,T,l<»-
Thus the proof of the upper estimate will be complete if we find a T with

||r|| < 10/V« . This is done in the following proposition.
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Proposition. Let p denote the normalized Haar measure on the group G of

all linear isometries of HS(/£, l2). Assume that m > n > 36. 77i¿?ti

p{uEG\ fly* » u °/||> 10/Vh } < 1.

Proof. Observe that the set E of the extreme points of the unit ball in

l2 <8> l2 equals 5„_, x 5m_, where Sk_x denotes the unit sphere in /*. It

follows from the duality between /2" <8> /2m and /2" ® /2m that

||y* o „ o/fl« sup{|</(z <S> w), u{j(x ®y))}\ \(x,y), (z, w) E E),

where ( • , • > denotes the inner product in the space HS(/2, l2). The latter

expression is equal to the norm of the 4-linear form ü on I" X l2  X l2 X l2

defined by

ü(x,y, z, w) = </(z <8> w), u(j(x ® y))).

Pick 1/8-nets Nx in S„_x and ;V2 in Sm_x and let N = NXX N2X NXX

N2. We may assume that card Nx < e3n and card N2 < e7"". (This can be

proved by a standard comparison of volumes argument, cf. e.g. [1, Lemma

2.4].) Thus card TV < e6nm < eX2m. Given (x, y, z,w) E E X E pick £ =

(x',y', z', w') E N such that ||jc - *'||, \\y - y'\\, \\z - z'\\, \\w - w'\\ < 1/8.

One can check easily that

\ü(x,y,z,w) - ü(x',y',z',w')\ <(|)||«||,

and hence

||« || < sup \ü (01+ \ \\ü u,
£EAf

so that

||ö|| < 2 sup \ü(i)\.
Í£N

Observe that

(w G G| ||w||> 10/V7Ï}   ç \u E G\ sup|iï(|)| >5/V7í }

Ç (J {uEG\\û(0\>5/VH}.
íeN

We shall use the estimate

v( = ju,(i7 G G| |m(|)| > ¿7} < 4 exp(-¿72 • 77777/2)

valid for any £ G E X E and 0 < a < 5/6.

Let ¿7 = 5/Vn . Since n > 36, we have ¿7 < 5/6 and hence

p{u E G\ ||«||> 10/Vñ } < card TV■ v( < 4e12m¿?-25m/2

= 4e-'"/2 < 4e-i8 < i,

which is the desired estimate.
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To estimate v% observe that

i>{-A{<6S.-.IK/(í®H'>|>«},
where A denotes the (nm — l)-dimensional normalized Lebesgue measure on

the sphere Snm_,. By the formula 2.4 in [1] the latter number is smaller than

4 expi-(sin_1a) nm/2\ < 4 exp(-a2nm/2).

(The estimate in [1] requires that sin "'a < 1, but in our case a < 1 - 1/6 <

sin 1.) This completes the proof of the proposition.

The lower estimate of d(l2 ® l2, l2 ® l2) is obvious if one notes that the

cotype 2 constant (cf. e.g. [1]) of the first space is < l\fe (cf. [3]) while the

second space contains an isometric copy of /£,, hence its cotype 2 constant is

> Vñ . This completes the proof of Theorem 1.

In the next theorem cp denotes the tensor product l2 <8> l2 with the norm

11»^= (tTSice(u*r)p/2)l/P   for 1 < p < oo

and

HL-H>
where u E l2 ® l2 is regarded as a linear operator in l2. Thus c2 may be

identified with HS(/2", /2").

Theorem 2. For arbitrary l<p<2<a<oo one has

(2Ve~)~\a < d(cpn,cqn) < 10«",

where a = max(l/p - 1/2, 1/2 - 1/a).

Proof. Assume that 1 < q* < p < 2, where q* = (p — I)/p. Then a =

1/2 - 1/a. We shall prove that d(cp\, cqn) < lO2^-1«" and

d(cp, cq) > (2Ve )~xna. The remaining cases follow from the identity

d(cpn, <) = d((c;)*, (<£)•) = d(c;„ c«)

and the observation that 2/p - 1 < 1.

Let us estimate the norm ||T: cq. -+ cp.\\, where T is the operator we have

used in the proof of Theorem 1. We have

||r:c;.^c;.||<||T:c;^c;.||

< ||T: cx" -> C^||2/p- x\\T:cï -+ c2-||2"2/'

< (io«'/2)27""1 = io2/"-1«'/2-'/".

The interpolation theorem we have used in the last estimate can be found e.g.

in [3].

On the other hand

¡7-': c;.-*c,".| <||id: c;.->c2"||-||«-': c2" -» c2"||-||id: c2" -». c;.||

<   «'A-l/2.  1  .„'/2-l/i_
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Thus we get

¿7(c;.,c;.)<|F|M|r-'||< io2/'-1«".

The lower estimate of d(cp, cq) uses the facts that the cotype 2 constant of

cp" is < 2Vë (cf. [3]) and the cotype 2 constant of c9" is > na. (The latter

space contains an isometric copy of lq.)

Remark. It is well known that if either 1 < p, q < 2 or 2 < p, q < oo,

then

¿7(c;, cq") = n"    where ß = |l/p - l/q\.

The result mentioned in the abstract follows by comparing our results with

those in [2].

The author would like to thank Professor T. Figiel for his help in preparing

this note.
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