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ANTISYMMETRY AND COINTRACTTVE REPRESENTATIONS

OF FUNCTION ALGEBRAS

WACI/AW SZYMAÑSKI

Abstract. In the present paper the antisymmetry of the image of a function

algebra under its contractive representation is characterized. A complete

solution of this problem is obtained for subnormal contractive repre-

sentations. Some applications, in particular, to the von Neumann functional

calculus, are given.

1. Introduction. Let A be a complex Banach algebra with unit I; A' denotes

its dual space and K(A) = (^ £ A': i//(l) = ||^|| = 1}. For a E A, spA a

denotes the spectrum of a in A, r(a) stands for the spectral radius of a, the set

VA(a) = {\¡/(a): \p E K(A)} is called the numerical range of a and v(a) =

sup{|À|: X E VA(a)) is called the numerical radius of a. If a E A, we denote

by â the functional on A ' given by

â(xp) = xp(a),       ÏEA'.

The set VA (a) is a convex, compact subset of the complex plane C and

(VI) if B is a Banach subalgebra of A such that 1, a E B, then

yB{o)= VA(a),

(V2)r(a)< v(a), e-x\\a\\ < v(a) < \\a\\.

An element a E A is called hermitian if VA (a) c R (the real line). Let H be a

complex, Hilbert space. L(H) denotes the algebra of all linear, bounder

operators in H and I is the identity operator. For T E L(H) the set

W(T) = {(Tx, x): x E H, \\x\\ = 1) is called the spatial numerical range of

T. By the Hausdorff-Toeplitz theorem, [4, Problem 166], W(T) is convex and

by Theorem 8 (p 86) of [1],

(V3) W(T) = VUH)(T).

This implies that T is hermitian if and only if T = T* (what is also proved in

terms of C*-algebras in [1, Example 3, p. 47]). For the theory of numerical

ranges we refer to [1].

For a Banach algebra A with unit 1, a contractive representation of A is an

algebra homomorphism <p: A -» L(H) such that <p(l) = I, \\<p(a)\\ < \\a\\,

a E A. If A is a commutative Banach algebra with unit, then Spec A denotes

its maximal ideal space, which is a w* (weak*) compact subset of K(A) <z A'.
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If X is a compact, Hausdorff space and A c C(X) is a function algebra on X

(see [3, p. 2]), then for X E X we write ta for the point-evaluation functional

at X (rx(a) = a(X), a E A) and we consider X homeomorphically embedded

into Spec A by the map X^>tx. Ch(A) denotes the Choquet boundary of A

[3, p. 87]. For a subset M of a locally convex topological vector space E we

denote by co M the closure of the convex hull of M and if M is a compact,

convex subset of E, then Me denotes the set of extreme points of M. We will

often use the Krein-Milman theorem, which says that if M is a compact,

convex subset of a locally convex topological vector space, then M =co Me

[8, p. 6]. An algebra & c L(77) containing 7 is called antisymmetric if the

only selfadjoint elements of & are scalar multiples of 7 [10].

In the present paper we prove necessary and sufficient conditions for the

antisymmetry of <p(A), where <p: A —> L(77) is a contractive representation of

a function algebra A c C(X) (§3). In §1 necessary and sufficient conditions

for a commutative Banach algebra A in order to co Spec A = K(A) are

proved. §4 contains applications of the previous results to contractive

subnormal representations of function algebras and to the von Neumann

functional calculus for subnormal operators.

2. The convex hull of Spec A. In this section we prove a necessary and

sufficient condition for a commutative Banach algebra A with unit in order to

K(A) =co Spec A, which is needed in §4.

Let us consider two Banach algebras, not necessarily commutative, A, B

with units 1 (both units are denoted by 1) and an algebra homomorphism <p:

A^> B such that ||<¡d(¿z)|| < ||a||, a E A, <pL4) is dense in B, and <p(l) = 1. Let

q/: B' —> A' be the map induced by ¿p, i.e. <r/(T) = t ° q>, t E 77'. <r/ is linear,

one-to-one and continuous in the w*-topologies of the duals. Put P = {¡¡/ G

K(A): \t(a)\ < \\<p(a)\\, a E A).

Proposition 1. The restriction <p' to K(B) maps homeomorphically K(B)

onto P. P is a convex, w*-compact subset of K(A) and for all a E A

¿Î(F) = œ ¿î(7-)= VB(y(a)).

Proof. First we prove <p'(K(B)) = P. If t G K(B), then (t ° <p)(l) = 1 and

|(t ° <p)(a)\ < ||<p(¿7)||, a E A, thus <p'(r) G P. Conversely, if <// G P, then,

because ker tp c ker \p, the linear functional

t(<p(¿7)) = \¡/(a),       a E A,

is well defined on <p(A). Now, for a E A: \r((p(a))\ = |^(¿7)| < ||<p(¿2)||, hence

we may extend t to B and t(1) = T(m(l)) = i//(l) = 1, thus t G 7^(77). Since

K(B) is convex, w*-compact in 77' and <p' is linear, continuous and one-to-

one, the first two assertions follow. Now, if a E A, then

¿Î(F) = {*(*): * e P) = {r(<p(a)): r E K(B)} = VB(<p(a))

and the equality ¿5(F) =co¿í(Fe) follows from the Krein-Milman theorem
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and from the linearity and w*-continuity of à.   Q.E.D.

The next proposition answers the question stated above.

Proposition 2. For a commutative Banach algebra A with unit  1 the

following conditions are equivalent :

(a) co Spec A = K(A) (the closure in the w*-topology of A');

(b)K(A)e cSpec/i;

(c) for every a E A, r(a) = v(a).

Proof, (a) => (b) follows from a result of [8, p. 9] and (b) => (a)-from the

Krein-Milman theorem. Let F: A —> C(Spec A) be the Gelfand transform of

A. The image A of A under F is a function algebra on Spec A. Since

||F(a)|| = r(a) < \\a\\, a E A and F(l) = 1, we may identify K(Â), by

Proposition 1, with the convex, w*-compact subset {\p E K(A): \^/(a)\ <

||.F(a)|| = r(a), a E A) of K(A) and we identify Spec A with a subset of

Spec A by point-evaluation functionals. Since A is a function algebra on

Spec A, K(Â) =co Spec A, by [8, Lemma 6.1]. Hence we have a sequence of

equivalences:

K(A) = co Spec A <=> K(A) = K(Ä) <=> for all ̂  E K(A), a E A,

\ip(a)\ < r(a)<=>v(a) < r(a), for all a E A,

which, together with (V2) completes the proof of (a) <=> (c).   Q.E.D.

Note, that condition (c) is discussed in [1, Theorem 7, p. 40].

3. The main theorem. Let A' be a compact, Hausdorff space, A c C(X)-a.

function algebra on X, <p: A -^ L(H)-a. contractive representation. B denotes

the norm-closure of <p(A). Recall, that a subset Y c X is called a set of

antisymmetry for A if every function a E A real on Y is constant on Y. The

algebra A is called antisymmetric if AT is a set of antisymmetry for A [3, p.

136]. We adopt the notation introduced at the beginning of §2, to our <p and

we always identify X with the subset of Spec A consisting of point-evaluation

functionals ta, X E X. If a E A, then, obviously, â(rx) = a(X), X E X.

Preserving these notations, we get the following

Theorem. Suppose that

the set Pe of all extreme points of P is a subset of X. (*)

Then y(A) is antisymmetric if and only if Pe is a set of antisymmetry for A.

Proof. Assume that Pe is a set of antisymmetry for A and take a E A such

that cp(a) = <p(a)*. By (VI) and (V3), <p(a) is a hermitian element of B, and,

by Proposition 1, â(P) = VB(<p(a)) c R. Hence a(Pe) c R and, by the

assumption, a(Pe) = {c} for some real c. By Proposition 1, â(P) =co â(Pe)

= {c}, hence

VB(<p(a)) = {c}    and    VB(<p(a) - c) = (0).

This implies v(<p(a) - c) = 0 and, by (V2), rp(a) = c. Conversely, take a E A

such that a(Pe) c R and assume the antisymmetry of <p(A). Then, again by
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Proposition 1,

VB(<p(a)) = à(P) = œ â(Pe) cR,

hence, by (V3), <p(a) = <p(a)*. The antisymmetry of tp(A) implies that <p(a) =

c for some real c, thus â(P) = VB(<p(a)) = {c) and, in particular, ¿7(Fe) =

{c}.   Q.E.D.
As an immediate corollary we get:

Corollary \. If <p: A -> L(H) is isometric, then <p(A) is antisymmetric if

and only if A is antisymmetric.

Proof. By the Krein-Milman theorem and Theorem 2.2.8 in [3] (or Propo-

sition 6.2 of [8]), for all ¿7 G A :

VA (a) = œ a(X) = œ ¿7(ChL4)),

because Ch(^) = K(A)e. If ç> is an isometry, then F = K(A), hence Pe =

K(A)e c X, which proves that (*) of the Theorem is satisfied. The application

of the Theorem finishes the proof.   Q.E.D.

Let us prove now several equivalent conditions for the isometry of <p. <r/:

B' -* A ' is the map introduced at the beginning of § 1.

Proposition 3. The following conditions are equivalent:

(a) m is isometric,

(b) K(A) = P,

(c) Spec A = <p'(Spec 77),

(d) X c <p'(Spec 77),

(e) X c P.

Proof. The implications (a) => (b), (c) => (d) => (e) are clear.

(b) => (c). If \p E Spec A c K(A), then, by (b) and Proposition 1, there is

t G K(B) such that \p = t ° <p. Since \f/ is multiplicative, so is t, hence

t G Spec B.

(e) =» (a). By Proposition 1 and (V2) we have for all ¿7 G A :

\\a\\< sup{|iKa)|: * e p] = o(«P(a)) <\\<P(a)\\ <\\a\\-   Q-E-D-

Now we describe precisely the set Pe.

Proposition 4. (a) F n Ch(^4) ci".

(b) IfPecX, then Pe c Ch(A).

(c) If Pe c ¿/(Spec 77) ¿77i¿7 X = Spec A, then Pe = Ch(i4) n <p'(Spec 77).

Proof, (c) follows from (a) and (b), since <p'(Spec 77) c Spec A = X. To

prove (a) take \¡> E P n Ch(^4) such that \p = cnpx + (1 - a)\p2, 0 < a < I,

i^„ ^2 G P. Since F c tV(^) and \b E Ch(A) = 7V(yl)e, we have a = 0 or 1,

hence i// G Pe. To prove (b) we show, that if \¡/ E Pe, $ = tx with some

X E X, then the only representing measure p on X for ^ is the point mass Sx.
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Then, applying Theorem 2.2.8 of [3] we will finish the proof. Take a proba-

bility measure u on X, representing \¡/. We may transport p to a measure p' on

P, as in [8, p. 37], such that p' represents \p on P (see [8] for the definitions).

But \p E Pe, hence, by [8, Proposition 1.4], the only measure, which repre-

sents \p on P is 8^ = Sx, what, coming back to X, proves, that 6\ is the only

representing measure for \p = ta on X.   Q.E.D.

4. Applications. In this section we want to apply previous results to some

special representation of function algebras, which satisfy the condition (*) of

the Theorem; and in particular, to subnormal representations and to the von

Neumann calculus for subnormal contractions. To begin with we prove a

simple remark for the sake of completeness.

Remark. Let A be a Banach algebra with unit 1. Let a„ E A be a sequence

of elements of A, which converge to a in norm. Then for every neighbourhood U

of VA (a) there is n0 such that for all n > n0: VA (an) c U.

Proof. Since VA (a) is compact, we may consider

dist(A, VA (a)) = inf{|A - z\ : z E VA (a)}

for A E C. Note first, that if b E A, then for all 4> E K(A):

dist(«//(è), VA (a)) <\4<(b) - ¡p(a)\ < v(a - b) <\\a - b\\.

Take now arbitrary e > 0 and define Ue = {X E C: dist(A, VA(a)) < e).

Choose n0 such that ||a„ — a|| < e for n > n0. Then for all »// E K(A):

dist{xP(an),VA(a)) <||a„-a||<£,

thus^(a„)c Ut.   Q.E.D. _
An operator T E L(H) is called convexoid [5, p. 114] if W(T)= co o(T),

where o(T) denotes the spectrum of T and co o(T) is the convex hull of

o(T), which is compact. If T is convexoid, then r(T) = v(T).

Proposition 5. The set G of all convexoid operators in L(H) is norm-closed.

Proof. L(H)~x denotes the set of all invertible operators in L(H). It has

been proved by Hildebrandt, [6, Satz 4], that for every T E L(H)

co o(T) = n{ W(STS~X) :S E L(H)~X). (H)

Take now a sequence Tn E Q, such that Tn -» T in norm. It is enough to

prove that W (T) c co o(T), because the opposite inclusion always holds [5,

Problem 169]. Suppose the converse. Then, by (H), there is 5 E L(H)~X and

x E H, \\x\\ = 1 such that (Tx, x) $ W(STSf^x). Choose a neighbourhood

U of W(STS~X) such that dist((7x, x), U) = g > 0. Since ST„S~X^>

STS~X in norm, there is n0 such that W(STnS~x)c U for n > n^ by the

previous Remark and (V3). Since Tn E Q, then, by (H),

(Tnx,x)EW(STnS-x)

for all n. But, by the choice of U:
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||F - Tn\\>\(Tx, x) - (Tnx, x)\ > 8 > O   for n > n0,

a contradiction.   Q.E.D.

Now we are able to give some applications of the results of §§2, 3. Consider

a function algebra A c C(X) and assume X = Spec .4, in other words, A

acts on its maximal ideal space. Let <p: A —> L(H) be a contractive represen-

tation of A and let 77 =<p(A). Let <p': B' -^ A' be as in §2.

Corollary 2. If all the operators (p(a), a E A are convexoid, then the set

Ch(A) n <p'(Spec 77) is a subset of X and <p(A) is antisymmetric if and only if

Ch(A) n <p'(Spec B) is a set of antisymmetry for A.

Proof. Let F be as in §2. We show that Pe c X.By Proposition 5 and the

assumptions, all the operators S E B are convexoid, hence r(S) = v(S),

S E 77. By Proposition 2 applied to the algebra B, K(B)e c Spec B and,

since ¿p' preserves, extreme points,

Pe = y'(K(B)e) c <p'(Spec 77) c Spec A = X.

Now,  the first assertion follows from Proposition 4(c),  and the second

one-from the Theorem.    Q.E.D.

An operator T G L(77) is called subnormal [5, p. 100] if there is a Hilbert

space K d 77 and a normal operator N G L(K) such that H is invariant for

N and T = N,H. An algebra homomorphism <p: A —> L(77) of a function

algebra A c C(X) is called subnormal if there is a Hilbert space K D 77 and

an involution-preserving homomorphism <p: C(X)-+ L(K) such that all the

operators <p(¿7), a E A leave 77 invariant and cp(a) = y(a)\H, a E A.

Corollary 3. Let <p: A —> L(77) ¿V ¿7 subnormal, contractive representation

of a function algebra A c C(X) such that X = Spec A Then f>(A) is anti-

symmetric if and only if Ch(yl) n ¿p'(Spec B) is a set of antisymmetry for A

(where <p', B are as above).

Proof. Clearly, all the operators <p(a), a E A are subnormal and every

subnormal operator is convexoid [2, Lemma 5].   Q.E.D.

Finally we give applications of the previous result to the von Neumann

functional calculus and spectral sets. If X c C is a compact set, then

P(X) c C(X) stands for the CÍA^-closure of the restrictions of all

polynomials to X. In what follows we assume that C\ X is connected. Then

Spec P(X) - X. Ii X is a spectral set for an operator T G L(77) (see [7], [9]

for the definitions) then there is a contractive representation <pr: P(X)-+

L(H) such that <jpt-(z) = T, where z denotes the identity function on X. This

representation has been constructed by von Neumann in [7]. Let

77 =tpT(P(X)) (the norm closure).

Corollary 4. Let X be a spectral set for a subnormal operator T E L(H)

such that C\X is connected. The algebra tpT(P(X)) is antisymmetric if and

only if Ch(P(X)) n spß T is a set of antisymmetry for P(X).
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Proof. We show spB T = <pj-(Spec B), where q>'T: B -» P(X)' is as in §2.

Here <pj-(Spec B) is identified with the set

{X E X: rx = t o (p, j E Spec B).

If X E rp^-(Spec B), then ta = t ° <¡p with some r E Spec B, hence X = tx(z)

= T(<pr(z)) = t(T) E spB 7\ Conversely, if X E spB T, then A = T(r) for

some t E Spec B, hence tx(z) = T(m(z)). Since t, tx, <p are multiplicative and

continuous, tx = t ° <p, thus A E <p^-(Spec B). Since <pr is a subnormal,

contractive representation of P(X), we apply Corollary 3.   Q.E.D.

Note, that Ch(P(X)) n sps T is always nonempty and Ch(P(X)) n spB T

contains only one point if and only if dim cpT(P(X)) = 1, by Proposition 4(c).

If T E L(H) is a contraction (|| T|| < 1), then the closed unit disc D is a

spectral set for T (the von Neumann inequality; see [7, 4.3], [9, Theorem A, p.

437]). T denotes the unit circle.

Corollary 5. If T E L(H) is a subnormal contraction, which is not any

scalar multiple of I, then the following conditions are equivalent:

(a) <pT(P(D)) is antisymmetric,

(b) spÄ T contains Y,

(c) q>T is an isometry.

Proof. If Tis not any multiple of I, then dim yT(P(D)) > 1, hence, by the

above remark, spB T n Y is a closed, non one-point subset of Y (because

Ch(P(D)) = Y, see [3, p. 84]). One can show, that no proper, non one-point

closed subset of Y is a set of antisymmetry for P(D). Hence spB T n Y is a

set of antisymmetry for P (D) if and only if Y c spB T. Applying Corollary 4,

we have just proved (a) <=> (b).

(b)=>(c) If P is as in §1, then, by Proposition 4(c) Pe = spB T n Y =

Ch(P(D)); by the Krein-Milman theorem, P = K(P(D)) and by Proposition

3, <pT is isometric. (c)=>(a) follows from the antisymmetry of P(D) and

Corollary 1.   Q.E.D.

Example 1. Let T E L(H) be a nonunitary isometry. C*(T) denotes the

C*-algebra generated by T and I. By [4, p. 86], for every A E Y there is a

linear, multiplicative functional i/<A on C*(T) such that ^x(T) = A. The

algebra B =<pT(P(D)) is a Banach subalgebra of C*(T) and the restrictions

of t/>x to B are multiplicative on B, hence \px E Spec B. Now spB T = {t(T):

t E Spec B) d {\¡/x(T): AeT) = Y and since every isometry is subnormal,

Corollary 5 implies, that <pT(P(D)) is antisymmetric.

Example 2. Suppose that Tx E L(HX) is a nonunitary isometry and T2 E

L(H2) is a subnormal contraction. Define T = Tx ® T2. The algebra

<pT(P(D)) is antisymmetric. Indeed, let B, Bx be the norm-closures of

<pT(P(D)) in L(HX © #2) and <pT(P(D)) in L(7/,), respectively. Since for all

polynomials p: p(T) = p(Tx) ® p(T2), we have ||p(r,)|| < ||/>(7^||, thus for

all f E P(D): \\<pT¡(f)\\ < \\<pT(f)\\- Hence the map <p: B^>BX given by

wiWrif)) = Vr^if) is weu defined. Since rp(7) = 7, (the identity in Hx), <p is a
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contractive representation of 77. Thus <r/: B'x -» 77' (as in §2) maps Spec B into

a subset of Spec 77,. This implies spB T c spB T and, by Example 1, T c

spfi T. Since F is a subnormal contraction, Corollary 5 finishes the proof.

Example 3. If F G L(77) is a subnormal partial isometry, then, by [5,

Problem 161], T may be written as an orthogonal sum T = F, © 0, where F,

is an isometry. If F, is not unitary, then Example 2 implies that <pT(P(D)) is

an antisymmetric algebra.

References

1. F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of

elements of normed algebras, London Math. Soc. Lecture Note Series, 2, Cambridge Univ. Press,

New York and London, 1971.

2. R. Bouldin, 77«? numerical range of a product, J. Math. Anal. Appl. 32 (1970), 459-467.
3. A. Browder, Introduction to function algebras, Benjamin, New York and Amsterdam, 1969.

4. J. Ernest, Charting the operator terrain, Mem. Amer. Math. Soc. 6, no. 171 (1976).

5. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1969.

6. S. Hildebrandt, Über den numerischen Wertebereich eines Operators, Math. Ann. 163 (1966),

230-247.

7. J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes,

Math. Nachr. 4 (1951), 258-281.
8. R. R. Phelps, Lectures on Choquefs theorem, American Book Co., New York, 1961.

9. F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955.

10. W. Szymanski, Antisymmetric operator algebras, I, Ann. Polon. Math, (to appear).

Institute of Mathematics, Polish Academy of Sciences, Krakow Branch, Krakow,

Poland (Current address)

Departamento de Matemáticas, Centro de Investigación del I. P. N., Apartado Postal

14-740, Mexico 14, D. F.


