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BOOLEAN ALGEBRAS WITHOUT NONTRIVIAL ONTO

ENDOMORPHISMS EXIST IN EVERY

UNCOUNTABLE CARDINALITY

JAMES LOATS1 AND MATATYAHU RUBIN

Abstract. We prove, assuming ZFC, that for every uncountable cardinal X,

there is a Boolean algebra of cardinality \, without onto endomorphisms

other than the identity.

1. Introduction. In this note we construct Boolean algebras (hereafter

denoted by BA's), in order to prove the following theorem.

Theorem 1.1. For every uncountable cardinal X, there is a BA B of power X,

such that B does not have onto endomorphisms except the identity.

Of the numerous results about rigid BA's let us mention four. Shelah [SI]

proved that for every uncountable cardinal A, there is a rigid (that is, without

automorphisms except the identity) BA of cardinality A. Bonnet [Bl], as-

suming CH, constructed a BA of power continuum, without onto or 1-1

endomorphisms except the identity. Loats [L] and independently Bonnet [B2]

generalized Bonnet's construction to k+, assuming of course k+ = 2*.

Every BA has some trivial endomorphisms. Let us describe them. Let B be

a BA, a,, . . . , a„ E B and for every 1 < i <j < », a, n a, = 0 ^ a„ and

\J"„xa¡ — 1. Let B \ a, be the BA that B induces on {x\x Q a¡), and for

every 1 < / < /i let F¡ be an ultrafilter on B \ a¡. Let B' be the power set of

{1, ...,«}, so B' is a BA. Let o E B', and let m be an endomorphism of B'

such that for every ox C o, m(ox) D a,. Let /: B -+ B the unique

endomorphism for which: (1) for every / G a and for every x C a¡: if x E F¡,

then/(x) = IJ {oj\j G m(i)}, and if x G F¡, then/(x) = 0; (2) for every i G a

and for every x C a¡: if x E F¡, then/(x) = x u U {af\j G m(i) - {/}}, and

if x G F¡, then/(x) = x.

Let us call such endomorphisms inevitable.

Shelah [S2] has found this full set of inevitable endomorphisms, and proved

that if vB holds, then there is a BA of power N, with only inevitable

endomorphisms.

So at present the following is known.
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(1) ZFC=> "For every X > Nn, there is a BA of power X, without onto

endomorphisms except the identity."

(2) A+ =2A=> "There is a BA of power X+ without onto or 1-1

endomorphisms except the identity."

(3) v K => "There is a BA without noninevitable endomorphisms."

Whether ZFC is sufficient for (2), and whether, say ZFC + CH is sufficient

for (3) is open.2

For BA's with few order preserving functions, see Rubin [Ru] and Shelah

m
Finally let us remark about countable BA's. Every countable BA has 2"°

automorphisms. See e.g. Monk [M]. Loats in [L] showed also that every

countable BA has 2"° onto endomorphisms which are not automorphisms.

The proof of Theorem 1.1 combines methods of Shelah [S3] and Reiger [R].

Shelah (unpublished) proved in ZFC that for every uncountable cardinal X,

there is a rigid dense linear ordering of power X. This was done by tagging

every element of the linear ordering by a stationary set, more precisely, by an

element of the BA D (X) = P(X)/I(X), where 7(X) is the ideal of all subsets of

A, that are disjoint from some closed and unbounded subset of X. Reiger [R]

used the fact that if /: X -» Y is a continuous 1-1 mapping, x E X and there

is a 1-1 sequence of order type X converging to x, then there is such a

sequence converging to f(x). He thus constructed a Stone space of a BA in

which the elements are tagged by their cofinalities. In order that each element

would have been tagged by a different cofinality he had to assume that the

Stone space has cardinality Ha = a. We noticed that much of Shelah's

tagging is preserved under 1-1 continuous functions of the order topology, so

we had more tags, and could construct Stone spaces in more cardinalities

than Rieger.

2. The construction.

Definition. Let A' be a topological space and x E X. Then Cf(x, X) =

{jtx| ju. is a regular infinite cardinal and there is a sequence {x¡\i < p) in X

such that x = lim,<ít x¡ and for every a < p, lim¡<a x¡ exists and is different

from x). When no confusion might be caused we omit X and write Cf(x).

Definition. Let X be a topological space, x E X and u be an uncountable

regular cardinal; we say that x is p-special in X, if p E Cf(x), and for every

{x¡\i < p), {y¡\i < p) as in the definition of Cf(x, X), (a|lim/<a x¡ =

limí<a y¡) is closed and unbounded in p. From now on let X be a fixed regular

uncountable cardinal. If X is a topological space and xElis X-special, we

define S/ to be the element of D(X) gotten in the following way. Let

{x,|i'<X} be as in the definition of Cf(x, X) and let S" = {a\X E

Cf(lim,<a *,)}. Let S/ = S'/I(X). Since x is X-special, 5/ is independent of

the choice of {x¡\i < X). When no confusion may arise, we write Sx instead of

2 Added in proof. New results by Monk and Shelah answer the latter question positively.
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Sx. In the sequel we will identify elements of D (A) and their representa-

tives in P (A).

Let S (B) denote the Stone space of the BA B.

Lemma 2.1. A BA B does not have onto endomorphisms except the identity iff

S(B) does not have 1-1 continuous functions except the identity.

Proof. Trivial.

Lemma 2.2. If X is a topological space, f: X -» X is 1-1 and continuous and

x EX, then: (a) Cf(x) Q Cf(f(x)); (b) ifx,f(x) are X-special, then Sx Ç Sf(x).

Proof. Trivial.

When we refer to a linear ordering as a topological space, we always mean

the order topology.

If X is Hausdorff compact totally disconnected space, then B(X) will

denote the BA of clopen subsets of X; so X = S(B(X)). If 7 is a complete

linear ordering then I is compact.

If 7 is a linear ordering, x G 7, and x is a left limit (that is, x is not a

successor), let cf~(jc, 7) be the unique regular cardinal p such that there is a

strictly increasing sequence of order type p converging to x; if x is not a left

limit, then cf ~(x) is undefined, cf+(x, I) is defined similarly. It is clear that if

7 is a complete linear ordering, x E I, then cf(x, 7) = (cf ~(x, I), cf+(x, 7)},

where undefined objects are omitted; and x is A-special iff either cf~(x, 7) =

A and cf+(x, 7) ¥= X or is undefined, or cf+(x, I) = X and cf ~(x, I) ¥= A or is

undefined.

Let us describe now the aim of our construction for regular cardinals.

Lemma 2.3. Let I be a linear ordering with the following properties: (1) 7 is

complete; (2) \{x\x E I and x has a successor in I}\ = A; (3) the set of points of

I that have a successor in I is dense in I, that is: if the open interval (y, z) is

nonempty, then there is xx E (y, z) such that xx has a successor; (A) for every

x E I either X G Cf(jc), or x is X-special; (5) there is a dense subset P Q I,

such that: for every x E P, x is X-special and Sx i= 0; for every x,y E P, if

x^y, then SXC\ Sy = 0; and if x G 7 - P, then either X G Cf(x) or else

S, = 0.
Then: I is Hausdorff compact and totally disconnected, \B(I)\ = A, and B(I)

does not have onto endomorphisms except the identity.

Proof. Let 7 satisfy conditions (l)-(5). Since I is complete, it is compact.

By (3) it is clear that every two distinct elements of I can be separated by a

set of the form Vx = {y\y > x) where x has a successor in 7, and clearly Vx

is clopen, so 7 is totally disconnected. It is easy to see that B(I) is the BA

generated by {Vx\x has a successor in 7), so \B(I)\ = A. Suppose now by

contradiction, that there is a 1-1 continuous function h from 7 to I, different

from the identity. Since 7 is Hausdorff and P is dense in 7 there is x E P such

that h(x) 7e x. Since by (5) x is A-special, A G Cf(x); so by Lemma 2.2 (a)
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X E Cf(h(x)). By (4) h(x) is X-special, so by 2.2 (b) Sx C 5A(jt). However,

again by (5), Sx i* 0 and Sh(x) is either 0 or it is disjoint from Sx, contradicting

the fact that Sx C Shix). So the identity is the only 1-1 continuous mapping

from 7 to I, and by Lemma 2.1, the identity is the only onto endomorphism

of 5(7).   Q.E.D.

Now for every regular cardinal X we are going to construct a linear

ordering 7 as in Lemma 2.3.

Let Z denote the linear ordering of the integers. If 7 and / are linear

orderings, let 7 + / denote their sum. If 7 is a linear ordering and for every

/ E I, K¡ is a linear ordering, let 2;e/ K¡ denote the sum of the K¡'s over 7. If

7 is a linear ordering let 7* be the reversed linear ordering. X is considered as

a linear ordering, where the ordering relation is G.

We will first describe the construction of 7, and then list without a proof a

series of easy observations, that will lead to the conclusion that 7 has

properties (l)-(5) of Lemma 2.3.

Lemma 2.4. The construction of I.

Suppose S Ç X is a set of limit ordinals. For every i E Z + X let us define

the linear ordering /, as follows. If i G S let /, = 1 + X*, where 1 is the linear

ordering with exactly one element; if / G S let /, = 1. Let 7S = 2,ez+A /,.

If 7 is a linear ordering let E, be the equivalence relation on 7 defined as

follows: x E,y iff there are just finitely many elements between x and y.

Every equivalence class of E, is convex.

If x E I, let x/Ej denote the equivalence class of x, and let I/E, =

{x/Ej\x E I}.

Observation 1. If A G Is/E, then A is either of order type ¿o, or ¿o*, or Z,

or |y4| = 1.

We now define Ps Q Is. It suffices to define Ps n A for every A E Is/E,.

So let A E Is/Ej : if \A\ = I, then Ps n A =0; otherwise let B be either w

or Z and /: 77 —* A be an onto order preserving or order reversing function;

define Ps n A = {f(2i + 1)|/' G tS}. This defines Ps up to isomorphism of

(Is, Ps)-
We now construct linear orderings 7„ for every « < ¿o. At the same time we

define P„ C I„.

Let [Sin\i < X, n < ¿o} be a family of pairwise disjoint stationary subsets of

X.
Let 70 = 1 + 70+ 1, F0 = P0 and let us denote 7_, = {min(70), max(70)}.

Suppose 7„ and P„ hâve been defined. Let /„: Pn -+ {Sin\i <X) be a 1-1

function. For every x G F„, let Kx = L,x) + 1, and for every x G 7„ - Pn, let

Kx = 1. Let In+X = 2xe/ Kx. W.l.o.g. we identify 7„ with a subset of 7„+1

according to the following embedding g: g(x) = ma.x(Kx), x E 7„. Let Fn+1

be the subset of In+X which satisfies: F„+1 n 7„ = 0 and for every x E Pn,
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Let Iw = U „<u I„, and I be the completion of Iw (under Dedekind cuts).

Let P = U n<a P„- This concludes the definition of 7 and P.

Observation 2. (a) Pn does not contain limit points, (b) If x,y G I„ -

7„_ „ and y is the successor of x, then x E Pn iff y G P„.

Observation 3. Let x G 7„ and / G {7jn < A: < w) u {7}. Then: (a) If

x E Pn and >> is the successor of x in ln then>> is the successor of x in /. (b) If

lim,<a x, = x in 7„, then lim(<a x,-, = x in 7.

Observation 4. If x is a limit point 7„, then x is a limit of a sequence of

elements which belong to P„.

Proof. By induction on n, then distinguish between the following cases:

x G /„ — I„-X; x G P„-X; x E 7„_, — P„-i-

Observation 5. Let x E In and J G {Ik\n < k < <o) u 7. Then: (a) x is a

limit point in 7; (b) if x is a limit point of 7„ then A G Cf(x, /) — Cf(x, I„).

Observation 6. (a) 7„ is a complete linear ordering, (b) If x G I — Iu, then

cf"(x, 7) = cf+(x, 7) = N0.

Conclusion 7. 7 satisfies (1), (2), (3) of Lemma 2.3.

Proof. (1) holds by the definition of 7. (2) holds by Observations 3(a) and

6. (3) holds by Observations 3(a) and 4.

Observation 8. (a) If x G Pn, then x is A-special in 7 and Sx = fn(x)/I(X).

(b) If x E I„ - 7„_, - Pn, then either A G Cf(x, 7), or cf+(x, 7) =

A, cf-(x, 7) < A and S¿ = 0.

Conclusion 9.1 satisfies (4) and (5) from Lemma 2.3.

For A regular, Theorem 1.1 now follows from Lemma 2.3 and Conclusions

7 and 9.

Let us denote by 7A the linear ordering that we have constructed in 2.4 for

A. If u is a limit cardinal, let p = 2,<K u, where {p¡\i < «} is a strictly

increasing sequence of regular cardinals. Let 7M = (2/<)C/tt) + 1. It is easy to

see that 7M is complete and totally disconnected, 173(7^)1 = p, and the identity

is the only 1-1 continuous mapping from 7M to 7^.

So Theorem 1.1 is proved.

Remark. Of course for every k > N0, we can construct in the above

method a family of 2* BA's as in Theorem 1.1, such that there is no

homomorphism from one BA in the family onto another.
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