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LONGITUDES OF A LINK AND PRINCIPALITY

OF AN ALEXANDER IDEAL

JONATHAN A. HILLMAN

Abstract. In this note it is shown that the longitudes of a /¿-component

homology boundary link L are in the second commutator subgroup G" of

the link group G if and only if the /¿th Alexander ideal S„ (L) is principal,

generalizing the result announced for p = 2 by R. H. Crowell and E. H.

Brown. These two properties were separately hypothesized as

characterizations of boundary links by R. H. Fox and N. F. Smythe.

For a ju-component homology boundary link L the first nonvanishing

Alexander ideal is &P(L). If L is actually a boundary link, then &p(L) is

principal and the longitudes of L lie in the second commutator subgroup of

the link group [2], [6]. R. H. Crowell and E. H. Brown have announced that

the latter two assertions are equivalent for a 2-component homology

boundary link [2]. This note presents a proof of the following generalization.

Theorem. Let L: \Jf=x Sx —> S3 be a (locally flat) p-component homology

boundary link, with group G. Then ^(L) = (A^) • A where A is contained in the

annihilator ideal (in

A -Z[Z>]«Z[ tx,tx~ ',..., tp,Çx])

of the image of the longitudes in the A-module G'/G", and A is contained in no

proper principal ideal. Hence &p (L) is principal if and only if the longitudes of

L lie in G".

Proof. L extends to an imbedding N: \J?„XSX X D2^>S3, since it is

locally flat. Let X = S3 - int(Im(/V)) have base point x0 E X - dX. Then

G « ttx(X, x0). Letp: X' -> X be the maximal abelian cover of X and choose

x'0 Ep-X(x0), so that irx(X', x'0) « G' and HX(X') = G'/G". By definition of

homology boundary link there is a map

f:(X,x0)^(y[SJx,*)

inducing an epimorphism of fundamental groups, and p is the pullback via /

of the maximal abelian cover of V/.i«^/1- Thus X' may be constructed by

splitting X along "Seifert surfaces", as was done in [3] for boundary links. For
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each j such that 1 < j < p, choose P, G Sx distinct from the wedge-point

* , and let Vj = f~x(Pj). After homotoping/ if necessary, each V} may be

assumed a connected, bicollared submanifold. Let Y = X — U/_ i int Wp

where the Wj are disjoint regular neighborhoods of the Vj in X. There are two

natural embeddings of each V} in Y; call one vJ+ and the other Vj_. (Making

such a choice is equivalent to choosing a local orientation for each P¡ in

Vf-i'S/1! or choosing orientations for the meridians of L.) Y is a deformation

retract of X — V, where V = \Jf=xVj. Then one has

X'= Y X V/fJ+(w) X <«„ . . . ,nj + 1.«„>

~ py_ (w) X <w„ ..., Hj,..., n^y,   Vw £!},    1 < j < p.

G'/G" = HX(X') then appears in the following segment of a Mayer-Vietoris

sequence:

77, (V) 0 A%HX (Y) 0 A -* 77, (X')

^H0(V)® A^H0(Y)®> A^Z^O

where rfjT/,»^) 0 A = (^+), 0 /, - (f;_)+ 0 1 and homology is taken with

integral coefficients. The map / induces a map from this Mayer-Vietoris

sequence to the corresponding one for the maximal abelian covering space of

0- F(p)yF(p)"^A"^A-^Z^0.

(Here 7r(p) is the free group of rank p, and e: A ->Z is the augmentation

homomorphism.) Since each Vj is connected, the maps on the degree zero

terms are all isomorphisms. Thus one concludes that

7/1(F)0A4t71(T)0A^A^O

is exact, where

K = ker(: G'/G" -» F(p)'/F(p)") = ker(: 77, (X') -* H0(V) 0 A).

Likewise/induces a map from the 4 term exact sequence of Crowell [1]

0 -» G'/G" -+A(G)-> A4>Z-+0

to the corresponding sequence for F(p) (which is just the above Mayer-

Vietoris sequence for V/_ tS/) and so 0 - K -* A(G) -» A(F( ¡i)) = A" -> 0

is exact. From this last short exact sequence one concludes that &k(L) =

&k(A(G)) is equal to the ideal generated by (J^o&iiK)' ê*-/(A'i); in

particular £>,,_! (7.) = 0 and £^(7.) = ê0(^0-

Now the A-submodule of 77, (A") generated by the longitudes is the image

of 77,(3^') via the inclusion map, and is contained in the image of 77,(7) 0

A, so is contained in K. Let B be this submodule, and let Q be the quotient

A-module. Thus 0 - B - K^>Q^>0 is exact, and &0(K) = &0(Q) ■ &0(B)

(because Q has a square presentation matrix-see below). It is easy to see that

(Ann(2f))* C &0(B): if
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is a presentation for B with <p(e,) = eth longitude (where e¡ is the /"th standard

basis element of A1"), and if a,,. . ., a„ € Ann(2?) then

í M       <P
Ax ©A"-»A"-»fl-»0

is also a presentation for B, where A/ = (M, diagf^, . . . , a^}), and so

II «,= det(diag{a„ . . . , ap}) E &0(B).
i = i

It is scarcely more difficult to see that  &0(B) c Ann(75):  let S be the

determinant of the p X p minor M" of M. Then

A"^A"^Coker M"^0

presents a module of which B is a quotient. Now if 2m,e, G AM, then by

Cramer's rule 8 • ^Lmiei = M"(2njej) where n¡ is the determinant at the matrix

obtained by replacing the /'th column of M" with the column of coefficients

{tti,}. Hence 5 annihilates CokerM", and a fortiori, 77. Therefore S0(77),

which is generated by such determinants, is contained in Ann(77). Thus to

prove the theorem it will suffice to show that S0(t3) is not contained in any
p

proper principal ideal, and that Q has a presentation of the form Aq -» A9 -^

Q -* 0 so that &Q(Q) = (det P) is principal.

Choose base points in V¡ n 9A (Sx X D2) for each /', 1 < /' < p, and

choose paths from these base points to a0. (Equivalently, X' contains copies

of V¡ indexed by ZM. Choose one such lift, V[, for each i.) If one now orients

the link L, the longitudes are unambiguously defined, as elements of G Let /,

be the image of the /th longitude in B. Since the /th longitude commutes with

the /th meridian, one has (/, - 1)/, = 0. In contrast to the case of boundary

links, dVj will in general have several components; however dVj n dN(Sx X

D2) is always homologous in dN(Sx X D2) to the /th longitude, if/ = /, and

to 0 otherwise. 8 V[ is a union of translates of loops in the homology classes

/],...,/. Hence there are relations of the form

2 Pyi'v - • •, VK= °
(=i

in B, and by the above remarks on dVJ; one has py(l, . . . , 1) = 0 for / ¥= j

and p¡¡(\,.. ., 1) = ± 1. Since ti • /, = 1 • /,, one may assume that pt =

Pu(tx, . . . ,tp) does not involve /,. Clearly p¡ Wj^tj — 1) is the determinant of

a p x p matrix of relations for B, and so is in &0(B). (For what follows it

would be sufficient to observe that it clearly annihilates B, and so the plh

power is in &0(B).) Let (c) be a principal ideal containing ê0(^)- Since A is a

factorial domain, c may be assumed irreducible. Therefore pxUj>x(tj — 1) G

(c) implies c divides px or some (tj — 1) for/ > 1. If c = r, - 1, then c cannot

divide PjU.k=jLJ(tk — 1) which does not involve tr If c divides p¡ for each /,
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1 < i < p, then c involves none of the variables and hence is in Z. Since

p,(l, . . . , 1) = ± 1, c = ± 1 and so (c) = A.

Let J = ker(: HX(X - V, dX - V) -» H0(dX - V)) = 77,^ - V)/Hx(dX

- V). From the following commutative diagram of A-modules

7/,(3F)0 A -► 77,(10 0 A -> HX(V, oV) 0 A

1 1 I
Hx(dX-V)® A-► HX(X - V) 0 A —► HX(X - V, bX - V) ® A

I                                      1 1
Hx(bX')-> HX(X')-> HX(X', bX')

(with rows from exact sequences of pairs and columns from Mayer-Vietoris

sequences of Z^-covers), one deduces a commutative diagram

77,(310 ® A-► 77,(1/) 0 A-» Hx(V)lHx(bV) 0 A -* 0

1                                  I I
Hx(bX- V)® A—>HX(X- F)® A-»J0 A—>0

I                                    I                                  i
77,(3^)-► K-v>   g->0

I I I
0 0 0

in which all rows and the first two columns are exact. It follows that the third

column is exact, and so

(77, (F)/77,(3F))0 A-»/ 0A^£^O

is a presentation for Q. Let p = rkzHx(V), o = rkzHx(dV). Since 0—>

772(K, dV) -* 77,(3K) -* HX(V) is exact, one has rkz(H X(V) / H x(dV)) = p -

o + p. Similarly,

7/,(Z- V,dX- V)-*H0(èX- V)^H0(X- V)^0

is exact, and rkzH0(dX - F) = a, rkzH0(X - V) = 1, so

/*z/ = rA:z/7, (X - V, dX - K) - o + 1

= rkzHx(S3 - V,haN)-a+\.

Now each component of the link is the homology boundary of a (singular)

surface in S3 - V, and so the natural map

77, (Im A) -^ 77, (S3 - V)

is null. Therefore

0- 77, (S3 - V)^HX(S3 - V,lmN)^H0(lmN)^H0(S3 - V)-*0

is exact, and so rkzHx(S3 - V, Im N) = rkzHx(S3 - V) + p - 1 =

rkzHx(V) + p — 1 by Alexander duality = p + ¡jl - 1. Thus rkzJ = p + p
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- a = rkz(HX(V)/Hx(dV)), and so &0(Q) is principal. This completes the

proof of the theorem.

Remarks. 1. Brown and Crowell asserted the somewhat more precise result

(for p = 2) that A could be generated by 3 elements, of the form (tx —

1)/'i(ii)> (h ~ tyPiih) and Piih) + PzOd ~ 1 where p¡(l) = 1, and that the
/th longitude lay in G" if and only if/>3_,(r3_,) were a unit [2]. This follows

readily from A = Axr\ A2, where A¡ is the annihilator of the /th longitude

and equals (/, - l,/>3_,(/3_,)) for some/?,, as above.

2. Fox and Smythe conjectured that if the longitudes were in G", then the

link would be a boundary link [6]. H. W. Lambert has constructed a

2-component homology boundary link which is not a boundary link, as a

counterexample to this conjecture [4]. (Figure 1 of his paper is incorrectly

drawn: the shorter longitude of this example does not map to 0 in the

Alexander module (via Crowell's inclusion 0- G'/G" -^A(G) [1]) and

hence this link is not such a counterexample.1) Notice also that boundary

links have the stronger (but less tractable?) property that the longitudes are in

(G<J' (where Gu = n*=iG„ is the intersection of the terms of the lower

central series). This follows from the construction of the co-covering by

splitting the link complement along Seifert surfaces, as in [3].

3. If L is trivial then S^L) = A, but the converse is false, even for knots

(p = 1), for there exists nontrivial knots (for instance doubled knots with

twist number 0) with Alexander polynomial 1 [5].
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'Lambert has advised me that his argument is based on a slightly different figure.


