LONGITUDES OF A LINK AND PRINCIPALITY OF AN ALEXANDER IDEAL

JONATHAN A. HILLMAN

ABSTRACT. In this note it is shown that the longitudes of a μ -component homology boundary link L are in the second commutator subgroup G'' of the link group G if and only if the μ th Alexander ideal $\mathcal{E}_{\mu}(L)$ is principal, generalizing the result announced for $\mu=2$ by R. H. Crowell and E. H. Brown. These two properties were separately hypothesized as characterizations of boundary links by R. H. Fox and N. F. Smythe.

For a μ -component homology boundary link L the first nonvanishing Alexander ideal is $\mathcal{E}_{\mu}(L)$. If L is actually a boundary link, then $\mathcal{E}_{\mu}(L)$ is principal and the longitudes of L lie in the second commutator subgroup of the link group [2], [6]. R. H. Crowell and E. H. Brown have announced that the latter two assertions are equivalent for a 2-component homology boundary link [2]. This note presents a proof of the following generalization.

THEOREM. Let $L: \bigcup_{i=1}^{\mu} S_i^1 \to S^3$ be a (locally flat) μ -component homology boundary link, with group G. Then $\mathcal{E}_{\mu}(L) = (\Delta_{\mu}) \cdot A$ where A is contained in the annihilator ideal (in

$$\Lambda = \mathbf{Z}[\mathbf{Z}^{\mu}] \approx \mathbf{Z}[t_1, t_1^{-1}, \ldots, t_{\mu}, t_{\mu}^{-1}]$$

of the image of the longitudes in the Λ -module G'/G'', and A is contained in no proper principal ideal. Hence $\mathcal{E}_{\mu}(L)$ is principal if and only if the longitudes of L lie in G''.

PROOF. L extends to an imbedding $N: \bigcup_{i=1}^{\mu} S_i^1 \times D^2 \to S^3$, since it is locally flat. Let $X = S^3 - \operatorname{int}(\operatorname{Im}(N))$ have base point $x_0 \in X - \partial X$. Then $G \approx \pi_1(X, x_0)$. Let $p: X' \to X$ be the maximal abelian cover of X and choose $x'_0 \in p^{-1}(x_0)$, so that $\pi_1(X', x'_0) \approx G'$ and $H_1(X') = G'/G''$. By definition of homology boundary link there is a map

$$f: (X, x_0) \rightarrow \left(\bigvee_{j=1}^{n} S_j^1, *\right)$$

inducing an epimorphism of fundamental groups, and p is the pullback via f of the maximal abelian cover of $\bigvee_{j=1}^{\mu} S_j^{-1}$. Thus X' may be constructed by splitting X along "Seifert surfaces", as was done in [3] for boundary links. For

Received by the editors September 12, 1977.

AMS (MOS) subject classifications (1970). Primary 55A25; Secondary 55A10.

Key words and phrases. Homology boundary link, longitude, Seifert surface, maximal abelian covering, Mayer-Vietoris sequence, second commutator subgroup, Alexander ideal, annihilator, principal ideal.

each j such that $1 \le j \le \mu$, choose $P_j \in S_j^{-1}$ distinct from the wedge-point *, and let $V_j = f^{-1}(P_j)$. After homotoping f if necessary, each V_j may be assumed a connected, bicollared submanifold. Let $Y = X - \bigcup_{j=1}^{\mu} \operatorname{int} W_j$, where the W_j are disjoint regular neighborhoods of the V_j in X. There are two natural embeddings of each V_j in Y; call one v_{j+} and the other v_{j-} . (Making such a choice is equivalent to choosing a local orientation for each P_i in $\bigvee_{j=1}^{\mu} S_j^{-1}$, or choosing orientations for the meridians of L.) Y is a deformation retract of X - V, where $V = \bigcup_{j=1}^{\mu} V_j$. Then one has

$$X' = Y \times \mathbf{Z}^{\mu} / \nu_{j+}(w) \times \langle n_1, \dots, n_j + 1, \dots, n_{\mu} \rangle$$

$$\sim \nu_{j-}(w) \times \langle n_1, \dots, n_j, \dots, n_{\mu} \rangle, \quad \forall w \in V_j, \quad 1 \leq j \leq \mu.$$

 $G'/G'' = H_1(X')$ then appears in the following segment of a Mayer-Vietoris sequence:

$$H_{1}(V) \otimes \Lambda \xrightarrow{d_{1}} H_{1}(Y) \otimes \Lambda \to H_{1}(X')$$

$$\to H_{0}(V) \otimes \Lambda \xrightarrow{d_{0}} H_{0}(Y) \otimes \Lambda \to \mathbf{Z} \to 0$$

where $d_*|H_*(V_j) \otimes \Lambda = (\nu_{j+})_* \otimes t_j - (\nu_{j-})_* \otimes 1$ and homology is taken with integral coefficients. The map f induces a map from this Mayer-Vietoris sequence to the corresponding one for the maximal abelian covering space of $\bigvee_{j=1}^{\mu} S_j^1$:

$$0 - F(\mu)'/F(\mu)'' \to \Lambda^{\mu} \to \Lambda \xrightarrow{\varepsilon} \mathbf{Z} \to 0.$$

(Here $F(\mu)$ is the free group of rank μ , and ϵ : $\Lambda \to \mathbf{Z}$ is the augmentation homomorphism.) Since each V_j is connected, the maps on the degree zero terms are all isomorphisms. Thus one concludes that

$$H_1(V) \otimes \Lambda \xrightarrow{d_1} H_1(Y) \otimes \Lambda \to K \to 0$$

is exact, where

$$K = \ker(: G'/G'' \to F(\mu)'/F(\mu)'') = \ker(: H_1(X') \to H_0(V) \otimes \Lambda).$$

Likewise f induces a map from the 4 term exact sequence of Crowell [1]

$$0 \to G'/G'' \to A(G) \to \Lambda \xrightarrow{\varepsilon} \mathbf{Z} \to 0$$

to the corresponding sequence for $F(\mu)$ (which is just the above Mayer-Vietoris sequence for $\bigvee_{j=1}^{\mu} S_j^1$) and so $0-K\to A(G)\to A(F(\mu))=\Lambda^{\mu}\to 0$ is exact. From this last short exact sequence one concludes that $\mathcal{E}_k(L)=\mathcal{E}_k(A(G))$ is equal to the ideal generated by $\bigcup_{l=0}^k \mathcal{E}_l(K)\cdot \mathcal{E}_{k-l}(\Lambda^{\mu})$; in particular $\mathcal{E}_{u-1}(L)=0$ and $\mathcal{E}_u(L)=\mathcal{E}_0(K)$.

Now the Λ -submodule of $H_1(X')$ generated by the longitudes is the image of $H_1(\partial X')$ via the inclusion map, and is contained in the image of $H_1(Y) \otimes \Lambda$, so is contained in K. Let B be this submodule, and let Q be the quotient Λ -module. Thus $0 - B - K \to Q \to 0$ is exact, and $\mathcal{E}_0(K) = \mathcal{E}_0(Q) \cdot \mathcal{E}_0(B)$ (because Q has a square presentation matrix-see below). It is easy to see that $(\operatorname{Ann}(B))^{\mu} \subset \mathcal{E}_0(B)$: if

$$\Lambda^{\lambda} \xrightarrow{M} \Lambda^{\mu} \xrightarrow{\varphi} B \to 0$$

is a presentation for B with $\varphi(e_i) = e$ th longitude (where e_i is the *i*th standard basis element of Λ^{μ}), and if $\alpha_1, \ldots, \alpha_{\mu} \in \text{Ann}(B)$ then

$$\Lambda^{\lambda} \oplus \Lambda^{\mu} \to \Lambda^{\mu} \xrightarrow{\tilde{M}} B \xrightarrow{\varphi} 0$$

is also a presentation for B, where $\tilde{M} = (M, \operatorname{diag}\{\alpha_1, \ldots, \alpha_u\})$, and so

$$\prod_{i=1}^{\mu} \alpha_i = \det(\operatorname{diag}\{\alpha_1, \ldots, \alpha_{\mu}\}) \in \mathcal{E}_0(B).$$

It is scarcely more difficult to see that $\mathcal{E}_0(B) \subset \operatorname{Ann}(B)$: let δ be the determinant of the $\mu \times \mu$ minor M'' of M. Then

$$\Lambda^{\mu} \xrightarrow{M''} \Lambda^{\mu} \to \text{Coker } M'' \to 0$$

presents a module of which B is a quotient. Now if $\sum m_i e_i \in \Lambda^{\mu}$, then by Cramer's rule $\delta \cdot \sum m_i e_i = M''(\sum n_j e_j)$ where n_j is the determinant at the matrix obtained by replacing the *i*th column of M'' with the column of coefficients $\{m_i\}$. Hence δ annihilates Coker M'', and a fortiori, B. Therefore $\mathcal{E}_0(B)$, which is generated by such determinants, is contained in Ann(B). Thus to prove the theorem it will suffice to show that $\mathcal{E}_0(B)$ is not contained in any proper principal ideal, and that Q has a presentation of the form $\Lambda^q \stackrel{P}{\to} \Lambda^q \to Q \to 0$ so that $\mathcal{E}_0(Q) = (\det P)$ is principal.

Choose base points in $V_i \cap \partial N(S_i^1 \times D^2)$ for each $i, 1 \le i \le \mu$, and choose paths from these base points to α_0 . (Equivalently, X' contains copies of V_i indexed by \mathbb{Z}^{μ} . Choose one such lift, V_i' , for each i.) If one now orients the link L, the longitudes are unambiguously defined, as elements of G. Let l_i be the image of the ith longitude in B. Since the ith longitude commutes with the ith meridian, one has $(t_i - 1)l_i = 0$. In contrast to the case of boundary links, ∂V_j will in general have several components; however $\partial V_j \cap \partial N(S_i^1 \times D^2)$ is always homologous in $\partial N(S_i^1 \times D^2)$ to the ith longitude, if j = i, and to 0 otherwise. $\partial V_i'$ is a union of translates of loops in the homology classes l_1, \ldots, l_{μ} . Hence there are relations of the form

$$\sum_{i=1}^{\mu} p_{ij}(t_1,\ldots,t_{\mu})l_j=0$$

in B, and by the above remarks on ∂V_j , one has $p_{ij}(1,\ldots,1)=0$ for $i\neq j$ and $p_{ii}(1,\ldots,1)=\pm 1$. Since $t_i\cdot l_i=1\cdot l_i$, one may assume that $p_i=p_{ii}(t_1,\ldots,t_\mu)$ does not involve t_i . Clearly p_i $\prod_{j\neq i}(t_j-1)$ is the determinant of a $\mu\times\mu$ matrix of relations for B, and so is in $\mathcal{E}_0(B)$. (For what follows it would be sufficient to observe that it clearly annihilates B, and so the μ th power is in $\mathcal{E}_0(B)$.) Let (c) be a principal ideal containing $\mathcal{E}_0(B)$. Since Λ is a factorial domain, c may be assumed irreducible. Therefore $p_1\prod_{j>1}(t_j-1)\in (c)$ implies c divides p_1 or some (t_j-1) for j>1. If $c=t_j-1$, then c cannot divide $p_i\prod_{k\neq j}(t_k-1)$ which does not involve t_j . If c divides p_i for each c

 $1 \le i \le \mu$, then c involves none of the variables and hence is in **Z**. Since $p_i(1, \ldots, 1) = \pm 1$, $c = \pm 1$ and so $(c) = \Lambda$.

Let $J = \ker(: H_1(X - V, \partial X - V) \to H_0(\partial X - V)) = H_1(X - V)/H_1(\partial X - V)$. From the following commutative diagram of Λ -modules

(with rows from exact sequences of pairs and columns from Mayer-Vietoris sequences of \mathbb{Z}^{μ} -covers), one deduces a commutative diagram

in which all rows and the first two columns are exact. It follows that the third column is exact, and so

$$(H_1(V)/H_1(\partial V)) \otimes \Lambda \to J \otimes \Lambda \to Q \to 0$$

is a presentation for Q. Let $\rho = rk_{\mathbf{Z}}H_1(V)$, $\sigma = rk_{\mathbf{Z}}H_1(\partial V)$. Since $0 \to H_2(V, \partial V) \to H_1(\partial V) \to H_1(V)$ is exact, one has $rk_{\mathbf{Z}}(H_1(V)/H_1(\partial V)) = \rho - \sigma + \mu$. Similarly,

$$H_1(X - V, \partial X - V) \rightarrow H_0(\partial X - V) \rightarrow H_0(X - V) \rightarrow 0$$
is exact, and $rk_{\mathbf{Z}}H_0(\partial X - V) = \sigma$, $rk_{\mathbf{Z}}H_0(X - V) = 1$, so
$$rk_{\mathbf{Z}}J = rk_{\mathbf{Z}}H_1(X - V, \partial X - V) - \sigma + 1$$

$$= rk_{\mathbf{Z}}H_1(S^3 - V, \operatorname{Im} N) - \sigma + 1.$$

Now each component of the link is the homology boundary of a (singular) surface in $S^3 - V$, and so the natural map

$$H_1(\operatorname{Im} N) \to H_1(S^3 - V)$$

is null. Therefore

$$0 - H_1(S^3 - V) \to H_1(S^3 - V, \text{Im } N) \to H_0(\text{Im } N) \to H_0(S^3 - V) \to 0$$
 is exact, and so $rk_{\mathbf{Z}}H_1(S^3 - V, \text{Im } N) = rk_{\mathbf{Z}}H_1(S^3 - V) + \mu - 1 = rk_{\mathbf{Z}}H_1(V) + \mu - 1$ by Alexander duality $= \rho + \mu - 1$. Thus $rk_{\mathbf{Z}}J = \rho + \mu$

 $-\sigma = rk_{\mathbb{Z}}(H_1(V)/H_1(\partial V))$, and so $\mathcal{E}_0(Q)$ is principal. This completes the proof of the theorem.

REMARKS. 1. Brown and Crowell asserted the somewhat more precise result (for $\mu = 2$) that A could be generated by 3 elements, of the form $(t_1 - 1)p_1(t_1)$, $(t_2 - 1)p_2(t_2)$ and $p_1(t_1) + p_2(t_2) - 1$ where $p_i(1) = 1$, and that the ith longitude lay in G'' if and only if $p_{3-i}(t_{3-i})$ were a unit [2]. This follows readily from $A = A_1 \cap A_2$, where A_i is the annihilator of the ith longitude and equals $(t_i - 1, p_{3-i}(t_{3-i}))$ for some p_i , as above.

- 2. Fox and Smythe conjectured that if the longitudes were in G'', then the link would be a boundary link [6]. H. W. Lambert has constructed a 2-component homology boundary link which is not a boundary link, as a counterexample to this conjecture [4]. (Figure 1 of his paper is incorrectly drawn: the shorter longitude of this example does not map to 0 in the Alexander module (via Crowell's inclusion $0 G'/G'' \rightarrow A(G)$ [1]) and hence this link is not such a counterexample.\(^1\)) Notice also that boundary links have the stronger (but less tractable?) property that the longitudes are in $(G_{\omega})'$ (where $G_{\omega} = \bigcap_{n=1}^{\infty} G_n$ is the intersection of the terms of the lower central series). This follows from the construction of the ω -covering by splitting the link complement along Seifert surfaces, as in [3].
- 3. If L is trivial then $\mathcal{E}_{\mu}(L) = \Lambda$, but the converse is false, even for knots $(\mu = 1)$, for there exists nontrivial knots (for instance doubled knots with twist number 0) with Alexander polynomial 1 [5].

REFERENCES

- 1. R. H. Crowell, Corresponding group and module sequences, Nagoya Math. J. 19 (1961), 27-40.
- 2. _____, Private communication to N. F. Smythe, May 1976.
- 3. M. A. Gutierrez, *Polynomial invariants of boundary links*, Rev. Colombiana Mat. VIII (1974), 97-109.
- 4. H. W. Lambert, A 1-linked link whose longitudes lie in the second commutator subgroup, Trans. Amer. Math. Soc. 147 (1970), 261-269.
 - 5. D. Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, California, 1976.
- 6. N. F. Smythe, *Boundary links*, Topology Seminar, Wisconsin, 1965, Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N. J., 1966, pp. 69-72.

DEPARTMENT OF PURE MATHEMATICS, SCHOOL OF GENERAL STUDIES, AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, A. C. T. 2600, AUSTRALIA

¹Lambert has advised me that his argument is based on a slightly different figure.