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SWEEPING OUT ON A SET OF INTEGERS

MARTIN H. ELLIS AND NATHANIEL A. FRIEDMAN1

Abstract. Let (X, ®, m) be a Lebesgue space, m(X) = 1, and let T be an

invertible measurable nonsingular aperiodic transformation of X onto X. If

S is a set of r integers, r > 2, then there exists a set A of measure less than

/•"' S*_! k~l such that X = U,es T"A. Thus for every infinite set of

integers W there exist sets A of arbitrarily small measure such that X =

U nniv T"A.

1. Introduction. Let (A", %, m) be a Lebesgue space, m (A") = 1, and let ?T

denote the class of invertible measurable nonsingular aperiodic trans-

formations T mapping X onto X. T is measurable if images of measurable

sets under T and T ~ ' are measurable and T is nonsingular if images of sets

of measure zero under T and T ~ ' have measure zero. T is aperiodic if the set

of points x such that T"x = x has measure zero for each n > 1. Hereafter all

transformations considered are assumed to be in 9\

A transformation T is measure preserving if images of a measurable set

under T and T ~ ' have the same measure as the set. A transformation T is

ergodic if TA = A implies m(A) = 0 or 1. An ergodic transformation is

aperiodic since m is nonatomic. T is mixing if

lim m(T"A n B) = m(A)m(B),       A,BE<&. (1.1)

If T is mixing, then T is ergodic and measure preserving.

Let 5 be a finite or infinite set of integers. If 1 = m(\Jn&sTnA), then we

say that A sweeps out on S. If T is mixing (or just partially mixing [6]), S is

infinite, and m(A) > 0, then it is not difficult to show that A sweeps out on 5.

In particular, there exist sets of arbitrarily small measure that sweep out on S.

In order to show that for each transformation in 5" there exist sweep out

sets of arbitrarily small positive measure on every infinite set of integers, we

shall study the question of how small can the measure of a set be if the set

sweeps out on a finite set of integers. Let S = [nx < n2 < ■ ■ • < nr) be a set

of r integers, where r > 2, and let

g(S,T) = inf\m(A):   \J   T»A - x\. (1.2)

It will be shown that g(S, T) < r~x 2¿=1 A:"1. To prove this result we shall
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use the following theorem which is due to Rohlin [7] in the measure preserv-

ing case. It was proved in [1] in the nonsingular case and a general discussion

of this case is given in [5, §7].

Theorem 1.3. Given T E 5", a positive integer r, and e > 0, there exists

B E % such that TB, 0 < i < r, are disjoint and m(\J,Zo TB) > 1 - e.

Note that if S = {0, 1, 2, ..., r - 1} then Theorem 1.3 implies g(S, T) <

l/r, with equality if T is measure preserving.

2. Preliminaries. All iterates V are nonsingular since T is nonsingular. Thus

each measure m(T') is absolutely continuous with respect to m, which implies

the following result.

Lemma 2.1. Let t be a positive integer. For each e > 0 there exists 8 = 8(e, t)

> 0 such that m(A) < 8 implies m({J'¡=_, T'A) < e.

Given a set of integers D, let \D\ denote the cardinality of D. Given a

positive integer h and sets of integers D and E, let

(D + E) mod h

= {u; 0 < u < h - I, u = (d + e) mod h for some d E D, e E E }.

Hereafter h will always be a positive integer and H will denote

{0,1,2,...,*- 1}.

Lemma 2.2. Let S = {«„ . . . , nr) be a set of r integers and let h > nr — nx.

Let D c 77 and \D\ > kh/r, where k E {0, 1, 2, . . . , r - 1}. Then there

exists p E H such that

|(({/>} + S) mod h) n D\ > k + 1.

Proof. For m E {0, I, 2,. .., r) let

Cm = {xEH; |(({x} + S) mod h) n D\ = m). (1)

Since h > nr — «,,

2   m\Cm\ = r\D\>kh. (2)
m = 0

Inequality (2) implies \Cj\ > 1 for some j > k + I.

Lemma 2.3. Given S and h > nr — nx, there exists E C H such that (E +

S) mod h = H and\E\ < r~xh2rk=x k~x.

Proof. Letpx = 0. Ifpx,p2,... ,Pj have been defined and

hj = \({px,p2,...,pj) + S) mod h\ (1)

satisfies A- < A, then choose />.+ 1 E 77 so that Ay+I is maximal. Let v be the

positive integer such that hv = h and let E = {px,p2, ■ ■ ■ ,/>„}•

Let «, = A, and let «, = A, - A,^,, 2 < j < o. Lemma 2.2 implies ty = r

for ally <rh/r2\ since
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l        A A   , nA --/•=-  (r - 1).

In general, let uk = r~'AS*~0'(r — /)"'. Lemma 2.2 implies that for 1 < k

< r, if v > j > uk, then A- > kr~xh; hence u < wr.

3. Main result. Theorem 1.3, Lemma 2.1 and Lemma 2.3 will now be used

to prove

Theorem 3.1. //reí, then g(S, T) < r~x 2Zrk=x k~\

Proof. Choose A > \nx\ + \nr\ such that a = r~xh 2¿_i k~x is not an

integer. Let v be the integral part of a and let e = a — v. By Lemma 2.1

choose S so that

m(A) < 8   implies mi   \J    T'A\<e/h. (1)

By Theorem 1.3 there exists a measurable set B such that T'B, 0 < / < A —

1, are disjoint and

mi U   T'b\ >l-8. (2)

Let  y = X - U ?=o' T'B- % Lemma 2.3 there exists E c H such that

|£| < v and (£ + S) mod A = #. For/ E // let

C}- U T'B. (3)
ie(({j) + E) mod h)

Since

ft-I /*-'     \

2   m(Cy) = |£|m    U   T'B) < \E\ < v,
7 = 0 \  , = 0 /

we can fix/ such that m(Cj) < v/h.

Let A = Cj u (U/1-2A 7*y)- Since A > |«,| + |nr|, we have

a- = ( U t"Cj) u   Ü  r'r),

hence Ar = (J „eS T1"^- Lastly, (1) and (2) imply

m(¿) < m(Cj) + m\    \J    T'Y\<v/h

Thus the theorem is proven.

i(A) < m(Cj) + m     U    7"^    < u/A + e/A = a/A.

Corollary 3.2. If T E ?F, iAe« /or et>e/y infinite set of integers W there

exist sets of arbitrarily small positive measure that sweep out on W.

Proof. Let e > 0. Choose r > 2 so that r~x Uk=x k~x < e. Theorem 3.1
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guarantees that for every subset S c W which contains r integers there exists

a set A with m(A) < e and A sweeps out on S.

Note that if T is invertible, measurable, and nonsingular but not aperiodic,

then the conclusion of Corollary 3.2 cannot hold for T. In this case there

exists a set B of positive measure q and a positive integer p such that for all

x E B, x = Tpx. By Lemma 2.1 there exists 8 > 0 such that m(A) < 8

implies m(Uf~o T'A) < q. If X = U£ _«, PC, then B must be contained

in IJfJo1 T'C. Hence m([Jf~o T'Q > <7> so m(C) > 8.
Remarks. If Tx and T2 are measure preserving, it is not hard to show that

g(S, Tx) = g(S, T2); hence g(S, T) is a function g(S) of S in this case. In

general g(S, T) < g(S) for T E 5".

In [3] Corollary 3.2 is applied to prove that for each infinite set of integers

W and T E 5" there exists a countable partition that generates on W. In [4]

Corollary 3.2 is applied to prove that for each ergodic measure-preserving

translation T on a compact abelian group and for each infinite set of integers

W there exist sets A of arbitrarily small positive measure such that (A, Ac)

generates on W.

Addendum. In [2] the following generalization of Corollary 3.2 is proved.

Let {7}: / E /} be a countable collection of invertible measurable nonsingu-

lar transformations on X (transformations with periodic components

allowed). There exist sets A of arbitrarily small positive measure for which

X = U ,e/ T¡A if and only if

m[x; {T~x(x): i6/} is finite] = 0.
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