SWEEPING OUT ON A SET OF INTEGERS

MARTIN H. ELLIS AND NATHANIEL A. FRIEDMAN ${ }^{1}$

Abstract

Let $(X, \mathscr{B}, m$) be a Lebesgue space, $m(X)=1$, and let T be an invertible measurable nonsingular aperiodic transformation of X onto X. If S is a set of r integers, $r \geqslant 2$, then there exists a set A of measure less than $r^{-1} \Sigma_{k=1}^{r} k^{-1}$ such that $X=\bigcup_{n \in S} T^{n} A$. Thus for every infinite set of integers W there exist sets A of arbitrarily small measure such that $X=$ $\bigcup_{n \cap W} T^{n} A$.

1. Introduction. Let (X, \mathscr{B}, m) be a Lebesgue space, $m(X)=1$, and let \mathscr{T} denote the class of invertible measurable nonsingular aperiodic transformations T mapping X onto $X . T$ is measurable if images of measurable sets under T and T^{-1} are measurable and T is nonsingular if images of sets of measure zero under T and T^{-1} have measure zero. T is aperiodic if the set of points x such that $T^{n} x=x$ has measure zero for each $n \geqslant 1$. Hereafter all transformations considered are assumed to be in \mathcal{T}.

A transformation T is measure preserving if images of a measurable set under T and T^{-1} have the same measure as the set. A transformation T is ergodic if $T A=A$ implies $m(A)=0$ or 1 . An ergodic transformation is aperiodic since m is nonatomic. T is mixing if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m\left(T^{n} A \cap B\right)=m(A) m(B), \quad A, B \in \mathscr{B} \tag{1.1}
\end{equation*}
$$

If T is mixing, then T is ergodic and measure preserving.
Let S be a finite or infinite set of integers. If $1=m\left(\cup_{n \in S} T^{n} A\right)$, then we say that A sweeps out on S. If T is mixing (or just partially mixing [6]), S is infinite, and $m(A)>0$, then it is not difficult to show that A sweeps out on S. In particular, there exist sets of arbitrarily small measure that sweep out on S.
In order to show that for each transformation in \mathscr{T} there exist sweep out sets of arbitrarily small positive measure on every infinite set of integers, we shall study the question of how small can the measure of a set be if the set sweeps out on a finite set of integers. Let $S=\left\{n_{1}<n_{2}<\cdots<n_{r}\right\}$ be a set of r integers, where $r \geqslant 2$, and let

$$
\begin{equation*}
g(S, T)=\inf \left\{m(A): \bigcup_{i=1}^{r} T^{n_{i}} A=X\right\} \tag{1.2}
\end{equation*}
$$

It will be shown that $g(S, T)<r^{-1} \Sigma_{i=1}^{r} k^{-1}$. To prove this result we shall

[^0]use the following theorem which is due to Rohlin [7] in the measure preserving case. It was proved in [1] in the nonsingular case and a general discussion of this case is given in [5, §7].
Theorem 1.3. Given $T \in \mathscr{T}$, a positive integer r, and $\varepsilon>0$, there exists $B \in \mathscr{B}$ such that $T^{i} B, 0 \leqslant i<r$, are disjoint and $m\left(\cup_{i=0}^{r-1} T^{i} B\right)>1-\varepsilon$.

Note that if $S=\{0,1,2, \ldots, r-1\}$ then Theorem 1.3 implies $g(S, T) \leqslant$ $1 / r$, with equality if T is measure preserving.
2. Preliminaries. All iterates T^{i} are nonsingular since T is nonsingular. Thus each measure $m\left(T^{i}\right)$ is absolutely continuous with respect to m, which implies the following result.

Lemma 2.1. Let t be a positive integer. For each $\varepsilon>0$ there exists $\delta=\delta(\varepsilon, t)$ >0 such that $m(A)<\delta$ implies $m\left(\cup_{i=-t}^{t} T^{i} A\right)<\varepsilon$.

Given a set of integers D, let $|D|$ denote the cardinality of D. Given a positive integer h and sets of integers D and E, let
$(D+E) \bmod h$

$$
=\{u: 0 \leqslant u \leqslant h-1, u=(d+e) \bmod h \text { for some } d \in D, e \in E\} .
$$

Hereafter h will always be a positive integer and H will denote $\{0,1,2, \ldots, h-1\}$.

Lemma 2.2. Let $S=\left\{n_{1}, \ldots, n_{r}\right\}$ be a set of r integers and let $h>n_{r}-n_{1}$. Let $D \subset H$ and $|D|>k h / r$, where $k \in\{0,1,2, \ldots, r-1\}$. Then there exists $p \in H$ such that

$$
|((\{p\}+S) \bmod h) \cap D| \geqslant k+1 .
$$

Proof. For $m \in\{0,1,2, \ldots, r\}$ let

$$
\begin{equation*}
C_{m}=\{x \in H:|((\{x\}+S) \bmod h) \cap D|=m\} . \tag{1}
\end{equation*}
$$

Since $h>n_{r}-n_{1}$,

$$
\begin{equation*}
\sum_{m=0}^{r} m\left|C_{m}\right|=r|D|>k h \tag{2}
\end{equation*}
$$

Inequality (2) implies $\left|C_{j}\right| \geqslant 1$ for some $j \geqslant k+1$.
Lemma 2.3. Given S and $h>n_{r}-n_{1}$, there exists $E \subset H$ such that $(E+$ $S) \bmod h=H$ and $|E| \leqslant r^{-1} h \sum_{k=1}^{r} k^{-1}$.

Proof. Let $p_{1}=0$. If $p_{1}, p_{2}, \ldots, p_{j}$ have been defined and

$$
\begin{equation*}
h_{j}=\left|\left(\left\{p_{1}, p_{2}, \ldots, p_{j}\right\}+S\right) \bmod h\right| \tag{1}
\end{equation*}
$$

satisfies $h_{j}<h$, then choose $p_{j+1} \in H$ so that h_{j+1} is maximal. Let v be the positive integer such that $h_{v}=h$ and let $E=\left\{p_{1}, p_{2}, \ldots, p_{v}\right\}$.

Let $n_{1}=h_{1}$ and let $n_{j}=h_{j}-h_{j-1}, 2 \leqslant j \leqslant v$. Lemma 2.2 implies $n_{j}=r$ for all $j \leqslant{ }^{\top} h / r^{2}$, since

$$
h-\frac{h}{r^{2}} r=\frac{h}{r}(r-1)
$$

In general, let $u_{k}=r^{-1} h \sum_{i=0}^{k-1}(r-i)^{-1}$. Lemma 2.2 implies that for $1 \leqslant k$ $\leqslant r$, if $v \geqslant j>u_{k}$, then $h_{j}>k r^{-1} h$; hence $v \leqslant u_{r}$.
3. Main result. Theorem 1.3, Lemma 2.1 and Lemma 2.3 will now be used to prove
Theorem 3.1. If $T \in \mathscr{T}$, then $g(S, T)<r^{-1} \Sigma_{k=1}^{r} k^{-1}$.
Proof. Choose $h>\left|n_{1}\right|+\left|n_{r}\right|$ such that $a=r^{-1} h \sum_{k=1}^{r} k^{-1}$ is not an integer. Let v be the integral part of a and let $\varepsilon=a-v$. By Lemma 2.1 choose δ so that

$$
\begin{equation*}
m(A)<\delta \quad \text { implies } m\left(\bigcup_{i=-2 h}^{2 h} T^{i} A\right)<\varepsilon / h . \tag{1}
\end{equation*}
$$

By Theorem 1.3 there exists a measurable set B such that $T^{i} B, 0 \leqslant i \leqslant h-$ 1, are disjoint and

$$
\begin{equation*}
m\left(\bigcup_{i=0}^{h-1} T^{i} B\right)>1-\delta \tag{2}
\end{equation*}
$$

Let $Y=X-\cup_{i=0}^{h-1} T^{i} B$. By Lemma 2.3 there exists $E \subset H$ such that $|E| \leqslant v$ and $(E+S) \bmod h=H$. For $j \in H$ let

$$
\begin{equation*}
C_{j}=\bigcup_{i \in((\{j\}+E) \bmod h)} T^{i} B \tag{3}
\end{equation*}
$$

Since

$$
\sum_{j=0}^{h-1} m\left(C_{j}\right)=|E| m\left(\bigcup_{i=0}^{h-1} T^{i} B\right) \leqslant|E| \leqslant v,
$$

we can fix j such that $m\left(C_{j}\right) \leqslant v / h$.
Let $A=C_{j} \cup\left(\cup_{i=-2 h}^{2 h} T^{i} Y\right)$. Since $h>\left|n_{1}\right|+\left|n_{r}\right|$, we have

$$
X=\left(\bigcup_{n \in S} T^{n} C_{j}\right) \cup\left(\bigcup_{i=-h}^{h} T^{i} Y\right)
$$

hence $X=\cup_{n \in S} T^{n} A$. Lastly, (1) and (2) imply

$$
\begin{equation*}
m(A) \leqslant m\left(C_{j}\right)+m\left(\bigcup_{i=-2 h}^{2 h} T^{i} Y\right)<v / h+\varepsilon / h=a / h \tag{4}
\end{equation*}
$$

Thus the theorem is proven.
Corollary 3.2. If $T \in \mathscr{T}$, then for every infinite set of integers W there exist sets of arbitrarily small positive measure that sweep out on W.

Proof. Let $\varepsilon>0$. Choose $r \geqslant 2$ so that $r^{-1} \sum_{k=1}^{r} k^{-1}<\varepsilon$. Theorem 3.1
guarantees that for every subset $S \subset W$ which contains r integers there exists a set A with $m(A)<\varepsilon$ and A sweeps out on S.

Note that if T is invertible, measurable, and nonsingular but not aperiodic, then the conclusion of Corollary 3.2 cannot hold for T. In this case there exists a set B of positive measure q and a positive integer p such that for all $x \in B, x=T^{p} x$. By Lemma 2.1 there exists $\delta>0$ such that $m(A)<\delta$ implies $m\left(\cup_{i=0}^{p-1} T^{i} A\right)<q$. If $X=\cup_{i=-\infty}^{\infty} T^{i} C$, then B must be contained in $\cup_{i=0}^{p-1} T^{i} C$. Hence $m\left(\cup_{i=0}^{p-1} T^{i} C\right) \geqslant q$, so $m(C)>\delta$.

Remarks. If T_{1} and T_{2} are measure preserving, it is not hard to show that $g\left(S, T_{1}\right)=g\left(S, T_{2}\right)$; hence $g(S, T)$ is a function $g(S)$ of S in this case. In general $g(S, T) \leqslant g(S)$ for $T \in \mathscr{T}$.

In [3] Corollary 3.2 is applied to prove that for each infinite set of integers W and $T \in \mathscr{T}$ there exists a countable partition that generates on W. In [4] Corollary 3.2 is applied to prove that for each ergodic measure-preserving translation T on a compact abelian group and for each infinite set of integers W there exist sets A of arbitrarily small positive measure such that $\left(A, A^{c}\right)$ generates on W.

Addendum. In [2] the following generalization of Corollary 3.2 is proved. Let $\left\{T_{i}: i \in I\right\}$ be a countable collection of invertible measurable nonsingular transformations on X (transformations with periodic components allowed). There exist sets A of arbitrarily small positive measure for which $X=\cup_{i \in I} T_{i} A$ if and only if

$$
m\left\{x:\left\{T_{i}^{-1}(x): i \in I\right\} \text { is finite }\right\}=0
$$

References

1. R. V. Chacon and N. A. Friedman, Approximation and invariant measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1965), 286-295.
2. M. H. Ellis, Sweeping out under a collection of transformations (submitted).
3. M. H. Ellis and N. A. Friedman, Subset generators for nonsingular transformations (submitted).
4. \qquad , Subsequence generators for ergodic group translations, Israel J. Math. (to appear).
5. N. A. Friedman, Introduction to ergodic theory, Van Nostrand-Reinhold, New York, 1969.
6. N. A. Friedman and D. S. Ornstein, On partially mixing transformations, Illinois J. Math. 16 (1972), 61-68.
7. V. A. Rohlin, In general a measure preserving transformation is not mixing, Dokl. Akad. Nauk SSSR 60 (1948), 349-351.

Department of Mathematics, State University of New York at Albany, Albany, New York 12222 (Current address of N. A. Friedman)

Current address (M. H. Ellis): Department of Mathematics, Northeastern University, Boston, Massachusetts 02115

[^0]: Received by the editors February 22, 1978.
 AMS (MOS) subject classifications (1970). Primary 28A65; Secondary 54H20.
 ${ }^{1}$ The research of the first author was partially supported by National Science Foundation Grant MCS7703659, research of the second author by MCS7606735A01.

