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ON UNIVALENT FUNCTIONS CONVEX IN ONE DIRECTION

A. W. GOODMAN1 AND E. B. SAFF2

Abstract. Let f(z) = z + "L2akzk be analytic and univalent in the unit

disk E: \z\ < 1 and map the disk onto a domain which is convex in the

direction of the imaginary axis. We show by example that for V2 -1 < r <

1, the function f(z) need not map the disk \z\ < r onto a domain convex in

the direction of the imaginary axis. We also find the largest domain

contained in f(E) for every normalized f(z) that maps E onto a domain

convex in the direction of the imaginary axis.

1. Introduction. A domain <>D is said to be convex in the direction of the

imaginary axis if for every vertical line £, the set £ n ^ is either £, an open

interval, or the empty set. Any domain that is convex in one direction can be

rotated so that it is convex in the direction of the imaginary axis. We let CD

denote the set of normalized functions

f(z) = z + | akzk (1)
2

that are regular and univalent in E; \z\ < 1 and for which f(E) is a domain

that is convex in the direction of the imaginary axis. A representation formula

for a certain subclass of functions in CD was given by Robertson in [3].

Recently Royster and Ziegler [4], using the results of Hengartner and Schober

[1], showed that Robertson's representation formula does in fact apply to the

whole class C7>.

If f(z) belongs to some set f of functions defined by a geometric property,

it often occurs that the function f(rz)/r is in the same set *% for every r in

(0, 1). This is certainly true for convex functions, starlike functions, typically

real functions, and many other sets. Thus it was a surprise, when Hengartner

and Schober [2] proved that the set CD does not have this property. If ^D is a

domain that is convex in the direction of the imaginary axis, it may happen

that the domains bounded by the level curves do not share this property.

Let RCD be the radius of convexity in the direction of the imaginary axis for
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the set CD. Thus RCD is the largest p with the property that/(rz)/r E CD for

every f(z) E CD and every r in (0, p). Hengartner and Schober proved that

RCD < I, but their method was qualitative and they gave no numerical

bounds. Here we prove by an example that Rçp < V2 — 1 « 0.4142. Since

any convex function is convex in every direction, and the radius of convexity

for the set S of univalent functions is 2 - V3 « 0.2679, this gives a trivial

lower bound. Thus 2 - V3 < RCD < V2 — 1. It seems reasonable to

conjecture that RCD = V2 — 1.

2. The example function. Let

F(z) =   z ~ Az , ,   A = e2ia cos a,   B = eia, (2)

(1 - Bz)2

and a is real. For convenience we impose the additional restriction that

0 < a < m.

Lemma 1. For each fixed a,0<a<Tr, the function F(z) is in CD. Further

F(E) is the set obtained by deleting from the complex plane the points on the

vertical half-line that starts at the point

cl _3fa. cos a   , ./ sin a 1      \      e-M«-3*/4)s0 = F(e  i,a) =-t— +1   —-—--    = ——-     (3)
u        v        ' 2 \    2 4 sin a ) 4 sin a w

and extends upward to —(cos a)/2 + /oo.

Proof. Since F'(z) = [1 + (B - 2y4)z]/(l - Bzf, the only critical point is

the simple one at z0 = e~3"* and an easy computation gives F(z0) = s0. For

the boundary of E we find that

F(e») = - cosa + ■ sipa + sm(a + g)cosa ,4x

{S   ' 2 2(1 - cos(a + 9))      ' U

Hence the boundary goes into a subset of the vertical line Re w =

-(cos a)/2. The existence of a simple critical point at z0 = e~3,a shows that

the subset is a doubly covered half-line, and the direction is established by a

consideration of F(e'e) when 9 is near —a. The argument principle shows

that F(z) is univalent in E. Hence F(z) E CD.

We now examine the behaviour of Re F(z) on the circle |z| = r. Setting

U'(r, í) = ¿Re F(reiB) = Re[/zF'(z)] = -Im[zF'(z)],        (5)

we see that if U'(r, 9) has four changes of sign in the interval [0, 2m) then for

fixed r, F(rz)/r is not in CD.

Since we are concerned with the shape of the level curves of F(z) we may

replace F(z) by G(z) = F(e~'"z). A moderate computation gives, for z =

re»,
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- |1 - zf A Re G(re») = |1 - z\6 lm[zG'(z)]

= lm{(e-iez - eiaz2)(l - zf]

« r(l - r2)[(l + r2)sin(9 - a) + r(3 sin a - sin(20 + a))].      (6)

From equation (6) it follows that the number of changes of sign of U'(r, 9)

on the circle |z| = r is equal to the number of changes of sign of

Q(9) = (1 + r2)sin(0 - a) + r[3 sin a - sin(2f? + a)]. (7)

3. An upper bound for 7?^. In this section we show that for each r

> V2 — 1, there is an a such that Q(9) has 4 changes of sign for 9 in [0, 27r).

We recall that 0 < a < m. Hence 0(0) = -(1 - rf sin a < 0 for all r < 1.

Further Q(m) = (1 + rf sin a > 0. Next

Q(3m/2) = -(1 + r2)cos a + 4r sin a, (8)

and so Q (3tt/2) < 0 whenever

tana <(1 + r2)/4r, (9)

and 0 < a < tt/2. We will see that for each fixed r > V2 -1, we can select

an e, 0 < e < tt/2, and an a < 7r/4 such that (9) is true and Q (3ît/2 + e) >

0. Then Q (9) will have 4 changes of sign for 9 in [0, 27t). First

Q(3m/2 + e) , + r2
hie) =-=-(cos e + tan a sm e)

v ' r cos a r      v '

+ 3 tan a + sin 2e + tan a cos 2e. (10)

We expand h(e) in a Taylor series about e = 0 and obtain

A(e) = h(0) + h'(0)e + h"(0)e2/2 + Me3

= -S + Ae-r-Se72 + Me3, (11)

where

S = l + r   - 4 tan a,   X = 2 - ^^- tan a, (12)
r r x   '

and Af = M(r, a) is a bounded term for 0 < a < tt/4 and V2 -1 < r < 1.

Notice that (12) implies

X = t + ^^ S,   where t = 2 - (1 + r2)2/4r2. (13)

Suppose now that r is fixed and 1 > r >V2 -1. With this r we have

t > 0. In order for inequality (9) to hold we will only consider angles a such

that 5 > 0. As r > V2 - I, the inequality

0 < Ô = 1 + ¿/r - 4 tan a < 2V2 - 4 tan o

in particular implies that 0 < a < tt/4. Next we show that by choosing
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8 > 0 sufficiently small (i.e., by proper selection of a) we have A(e0) > 0, for

e o = 28/t (0 < e0 < it/2). Indeed (11) and (13) yield

h(£o)      -8  .(    ,   1 + r2  A I        8    ,u
—r~ = ~r + T + —A— o — + -r— +M

4      4     \       4r     >4    2eo

-T3    ,      T3      ,    /   1  + r2 \ T2    ,    T    ,   ,. ,,.,= -T + -T + I  -T7-  I "ÍT + T +AÍ, (14)
852       4S2      \    I6r   ) 8       4

and since t > 0, we obtain h(e0)/e% > t3/852 + M. Clearly as S ->0+, the

right side of this last inequality goes to + 00. Hence h(e0) > 0 for 5 > 0

sufficiently small. But from (10) this means that for suitable a the

trigonometric polynomial Q(9) has 4 changes of sign on [0, 27r). We have

proved that RCD < V2 - 1.

4. The domain covered by f(E). Suppose that f(z) E CD and omits the

point a + bi. Then it must omit every point on one of the two vertical

half-lines a + (b + s)i, with s > 0 or s < 0. In the latter case we consider

f(z) in place of f(z). Thus we may assume that f(z) omits the vertical line

a + (B + s)i, s > 0, where B = b or — b and a + Bi is the endpoint of the

omitted half-line. If a = 0, then we must have B > 0.

Let G(w) be the inverse of F(z) defined by (2). It is intuitively clear that

we can select / > 0 and a such that the composite function B(z) s G(tf(z))

satisfies the conditions of Schwarz's lemma.

To prove this assertion we must find í and a so that the endpoints coincide

for the omitted rays of tf(z) and F(z). From equation (3)

</> he arg s0 = arg
cos a   ,—^— +i ./ sin a 1      \1 ,,     ,   37T      /1CX

so that as a runs through the open interval (0, it) the angle <b runs through the

open interval ( — it/2, 3ir/2) in the reverse order. The endpoints <b = - tt/2

or 377/2 correspond to the case a = 0, B < 0 and this case cannot occur.

Thus we can always find a so that arg x0 = arg(a + Bi) and then we can find

a í > 0 so that s0 = t(a + Bi).

Once this selection is made, then B(z) = G(tf(z)) satisfies the conditions

of Schwarz's lemma. Since B'(0) = G'(0)tf'(0) = t, we see that r < 1 and

: = 1 if and only if f(z) = F(z). Thus a + Bi must he outside the domain

bounded by the curve described by s0. Setting p = |s0|, we have from (3)

P ~ 4 sin a ~ 4 sin(37r/4 - <b/2) ' ^ ^

Thus (16) gives the equation in polar coordinates of the curve described by j0.

A simple argument shows that equation (16) gives the boundary of the

covered domain <$ if the omitted point is in the upper half-plane, but if the

omitted point is in the lower half-plane we must replace F(z) by F(z). We

have proved
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Theorem 1. Let fy be the largest domain contained inf(E)for every function

fin the family CD. Then fy is bounded in the upper half-plane by the curve (16)

for 0 < </> < ?7, and fy is bounded in the lower half-plane by the reflection of

this curve in the real axis.

Added in proof. After this paper was accepted for publication, we learned

that Theorem 1 was proved earlier by M. O. Reade and E. J. Zlotkiewicz [On

univalent functions with two preassigned values, Proc. Amer. Math. Soc. 30

(1971), 539-554]. However, our proof is simpler than theirs. They describe the

domain that is always covered, by the inequality 8|w|(|>v| + |Im w|) < 1.
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