THE SCHUR INDEX OF THE *p*-REGULAR CHARACTERS OF THE BOREL SUBGROUP

G. I. LEHRER

ABSTRACT. Let B be the group of \mathbf{F}_q -rational points of the Borel subgroup of a connected reductive group defined over the finite field \mathbf{F}_q . It is shown that under appropriate conditions, all irreducible characters of B which have degree prime to q have Schur index one.

Let G be a connected reductive linear algebraic group defined over the finite field \mathbf{F}_q , with corresponding Frobenius map F. We assume that G has connected centre Z and that the characteristic p is good for G. If H is a closed subgroup of G, H will denote its group of \mathbf{F}_q -rational points; for a finite group H, a complex irreducible character is p-regular if p does not divide its degree; $m_p(H)$ is the number of such characters. It was shown in [2] that if B is an F-stable Borel subgroup of G, then $m_p(B) = m_p(G)$, verifying a special case of Alperin's conjecture for finite groups. Ohmori [3] has shown that the $|Z|q^l$ (where l is the semisimple rank of G) p-regular characters of G all have Schur index one, i.e. can be realized in their field of characters. In this note we prove the corresponding result for p-regular characters of B, viz:

THEOREM. The p-regular characters of B all have Schur index one.

In the proof, we use the notation of [1] and [2]. **B** is the semidirect product $T \ltimes U$, where U is a maximal unipotent subgroup of G. Correspondingly, $B = T \ltimes U$, where U is a p-group and T an abelian p'-group.

PROPOSITION 1. Let χ be a p-regular character of B. Then $\chi = (\mu \phi)^B$, where μ is a linear character of U and ϕ is a character of the centralizer $T(\mu)$ of μ in T. (Here $\mu \phi$ is a character of $T(\mu) \ltimes U$).

This is elementary and was noted in [2].

COROLLARY 1'. (i)
$$\chi|_{T(\mu) \cdot U} = \varphi \cdot \sum_{t \in T/T(\mu)} \mu^t$$
; (ii) χ vanishes outside $T(\mu) \cdot U$.

PROOF. (i) is a simple application of Frobenius' formula for induced characters, and (ii) follows since $T(\mu) \cdot U$ is normal in B.

PROPOSITION 2. $\sum_{t \in T/T(\mu)} \mu^t$ takes rational values on U.

Received by the editors January 31, 1978.

AMS (MOS) subject classifications (1970). Primary 20G40, 20G05; Secondary 22E45.

PROOF. We have a canonical isomorphism [1, p. 258] $\eta: U/U' \to X_1 \times \cdots \times X_s$, where $X_i \simeq (\mathbf{F}_{q^{n_i}})^+$. Thus we speak of the *support* of μ , defined as $\{i \mid \mu(X_i) \neq 1\}$. Because of our assumption of connected centre, T acts transitively on the set of linear characters of U with given support (by the argument used to prove Theorem B' in [1]). Hence $\sum_{t \in T/T(\mu)} \mu^t$ is the sum of all linear characters of U with fixed support I. By applying Galois automorphisms, one sees that this sum always takes rational values.

For any character ξ of some finite group, denote by $\mathbf{Q}(\xi)$ the algebraic extension of \mathbf{Q} obtained by adjoining all the values of ξ . This is the character field of ξ . From Proposition 2 we have immediately:

COROLLARY 2'. If χ is a p-regular character of B, and φ is as in Proposition 1, then $\mathbf{Q}(\chi) = \mathbf{Q}(\varphi)$.

LEMMA 3. The restriction of χ to T is $\phi_{T(\mu)}^T$.

PROOF. This follows directly from Corollary 1' by evaluation of $\chi|_T$, or by applying Mackey's subgroup theorem.

LEMMA 4. $\phi_{T(\mu)}$ has an extension $\overline{\phi}$ to T, such that $\mathbf{Q}(\overline{\phi}) = \mathbf{Q}(\phi)$.

PROOF. If Z is trivial then $T = T_1 \times T(\mu)$, since T is a direct product of the groups $\mathbf{F}_{q^{n_i}}^*$ and the condition $t \in T(\mu)$ is that certain components be trivial. In the general case, since the Z-span of the fundamental roots has a Frobenius-invariant complement in the character group $X(\mathbf{T})$, we have $\mathbf{T} \simeq \mathbf{Z} \times \mathbf{T}/\mathbf{Z}$; using Lang's theorem it follows that $T \simeq \mathbf{Z} \times T/\mathbf{Z}$. Hence $T(\mu)$ is again a direct factor (containing Z) and if $T = T(\mu) \times T_1$, we may take $\overline{\varphi}(t, t_1) = \varphi(t)$.

COROLLARY 4'. The multiplicity $(\chi, \bar{\phi}_T^B) = 1$.

PROOF. From Lemmas 3 and 4, $(\chi, \overline{\varphi})_T = (\varphi_{T(\mu)}^T, \overline{\varphi}) = 1$. The corollary now follows by Frobenius reciprocity.

PROOF OF THE THEOREM. Let χ , φ be as in Proposition 1. From Corollary 2' we have $\mathbf{Q}(\chi) = \mathbf{Q}(\varphi)$. The theorem is therefore proved if χ can be realized over $\mathbf{Q}(\varphi)$. But (with $\bar{\varphi}$ as in Lemma 4) $\bar{\varphi}_T^B$ is a representation of B in $\mathbf{Q}(\bar{\varphi}) = \mathbf{Q}(\varphi)$, which contains a representation whose character is χ with multiplicity one. Hence χ can be realized over $\mathbf{Q}(\varphi)$.

COROLLARY. Let the integers n_i be as in the proof of Proposition 2, and let $n = \text{g.c.d.}\{n_i\}$. Then $\mathbb{Q}((q^n - 1)\sqrt{1})$ is a splitting field for the p-regular characters of B.

REFERENCES

- 1. G. I. Lehrer, Adjoint groups, regular unipotent elements and discrete series characters, Trans. Amer. Math. Soc. 214 (1975), 249–260.
 - 2. ____, On a conjecture of Alperin and McKay, Math. Scand. 43 (1978), 5-10.
- 3. Z. Ohmori, On the Schur indices of reductive groups, Quart. J. Math. Oxford Ser. (2) 28 (1977), 357-361.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF SYDNEY, SYDNEY, N.S.W. 2006, AUSTRALIA

Current address: Mathematics Institute, University of Warwick, Coventry CV4 7AL, England