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MAJORIZATION ON A PARTIALLY ORDERED SET

F. K. HWANG

Abstract. We extend the classical concept of set majorization to the case

where the set is partially ordered. We give a useful property which char-

acterizes majorization on a partially ordered set. Quite unexpectedly, the

proof of this property relies on a theorem of Shapley on convex games. We

also give a theorem which is parallel to the Schur-Ostrowski theorem in

comparing two sets of parameters in a function.

1. Introduction. The classical concept of majorization is defined on two

n-sets of numbers A = {ax, . . . , an) and B = [bx, . . ., bn) as follows. Let a[iX

and b[iX denote the ith largest numbers in A and B, respectively. Then A is

said to majorize B if and only if

k k

2 a[i) > 2 fyi]   for A- = 1, ...,«- 1
<-i /-i

and
n n

i— 1 i—l

The concept of majorization is closely related to the concept of a Schur

function. A function/(x,, . . ., x„) is called a Schur function [4] if, for all / and

h

(£-£)*-*»*

The following theorem connects the two concepts:

Theorem 1.1 (Schur [5], Ostrowski [4])./(a„ . .., an) > fibx,. .., bn)for

all A majorizing B if and only if f is a Schur function.

Set majorization can be naturally extended to vector majorization. We say

that an «-vector A = (ax, . . . , a„) majorizes another «-vector B =

(bx,..., bn)if and only if

k k

2 a, > 2 *,   for k = 1,...,«- 1,
i-\        (=i

and
n n

2 a,, - 2 br
/-i        <-i
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The concept of vector majorization has been proved useful in many instances

([1], [3]) where vector optimization is concerned.

Vector majorization can be interpreted in a different way which leads to a

further extension. Let P = {/»,,...,/?„} be a set of points ordered linearly by

"-> " and let A = [ax, ... ,a„] and B = [bx,..., bn) be two sets of weights

where a¡ and b¡ are associated with /», for /' = 1,..., n. Then A is said to

majorize B if for every point /», in P, the sum of the a weights of all points

{Pf- Pj -*Pt orPj — Pi) is not less than the sum of the b weights on the same

set of points. With this viewpoint, it is natural to consider majorization on a

set of points P partially ordered by "-» " (read "dominates"). For P' E P let

A(P') (or B(P')) denote the sum of the weights (b weights) of all the points

{/>,: Pj E P' or pj -»/», for some/», E P'}. Then we say that A majorizes B on

P if A(P) = B(P) and for every P' c P, A(P') > B(P'). Note that when P is

a linearly ordered set, then A majorizing B on P is reduced to the definition

of vector majorization.

In this paper we give a useful property which characterizes majorization on

a partially ordered set. It turns out that to prove this property, we need to

resort to some concepts and results in characteristic function games. There-

fore we give a brief sketch of what we need from characteristic function

games in §2. Using the characterization property, we prove a theorem parallel

to the Schur-Ostrowski theorem on set majorization. A similar theorem on

vector majorization follows as a corollary to our theorem.

2. Some concepts and results in characteristic function games. For a set of

players 7V={l,...,/.}a characteristic function «(•) is a real valued function

assigning to each subset S E N the number v(S). This number may be

thought of as describing the potential worth of the coalition S. The function

v(-) completely determines the strategic possibilities of the game. A game is

convex if its characteristic function satisfies v(<j>) = 0 and

v(S) + v(T) < v(S u T) + v(S n T)

for any S, T E N.

The core of a characteristic function game is the set of solutions to the

following set of equations

2 x¡ >v(S)   for S EN,
ieS

2*, = e(A0.
I6JV

The core can be described intuitively as the set of payoff vectors that leave no

coalition in a position to improve the payoffs of all its members. A character-

istic function game need not have a core. However, Shapley [6] proved the

following.

Theorem 2.1. The core exists for every convex game.
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It is quite unexpected that this theorem will be needed to prove a property

of majorization on a partially ordered set.

3. The main theorems. Consider a given set of points F = {p,.pn)

partially ordered by "-» " and a set of weights A associated with P. Letp, and

Pj be two points in P such that p¡-*Pj. Then a flow from a¡ to a is a

transformation from A to A' where

a¡ = a¡ - S,

a] = üj + 8,

a'k = ak   for k =fc i,j,

for some S > 0.

Theorem 3.1. Let A and B be two sets of weights associated with the partially

ordered set P. Then A majorizes B on P if and only if A can be transformed into

B by a finite set of flows (in fact, at most (£) flows are needed).

Proof, (i) The "if direction. If A can be transformed into A' by a flow,

then clearly A majorizes A' on P. Since majorization on P is transitive, A

majorizes B on P.

(ii) The "only if direction. Suppose A majorizes B on P; we show that

there exists a finite set of flows transforming A into B. We prove this by

induction on the number of points in P. Let q be a point of P which is not

dominated by any other point of P. If q does not dominate any other point

we ignore q and prove Theorem 3.1 by induction. Otherwise let qx.a, be

the points dominated by q, but not dominated by any other points dominated

by q. If aq = bq, then again, we can ignore q and prove Theorem 3.1 by

induction. So we assume aq — bq = 9 > 0. We now show that there exists a

set of weights A ' which can be obtained from A by flowing the amount 0¡ > 0

from q to q¡, i = I, .. . ,j, such that E^ify = 9 and A' majorizes B on P.

Once this has been proved, then by induction A' can be transformed into B

by a finite set of flows. Consequently, A can be transformed into B by a finite

set of flows and Theorem 3.1 follows.

For P' Ç P, define

Ä(P') = A(P') - 0.

Let A be a subset of J = (1,. . . ,j). Define

vK = MMB(PK) - Ä(PK))

where PK is a subset of P — {q} containing K but not any element from

J — K. Then A' majorizes B if and only if

2 0¡ > %   for every K QJ.
¡eK

We can define a characteristic function game on the set of players J by

treating [vK: K G J) as the characteristic function. Then
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2 9¡ > vK   for every K E J
iSK

is equivalent to the statement that the core of the game exists. We now prove

the core exists by showing that the game is convex.

Let P% and P£ be two subsets of J such that

vK = B(P°K) - I{P°)

and

%- - B(P°) - Ä(P°).

Then

%ur > B{Pk U P°k) - Ä{P°k U P°K)

= b{p*) + ä(j£) - b(p* n /»• )

= vK + %, - (*(¿»° n p£) - ^"(p^ n /£))

> % + %' - %nA"-

Therefore the game is convex and so the core exists by Theorem 2.1.

Corollary. Suppose P is a linearly ordered set. Then a necessary and

sufficient condition for A majorizing B is the existence of an nX n triangular

matrix M = {my} such that m0 > 0, my = 0 for i <j, E"_xm0 = 1 and

B = MA (by interpreting m0a¡ as the amount of flow from /», topf).

Note that this corollary is very similar to Theorem 46 of [2] which says that

a necessary and sufficient condition for a set A majorizing a set B is the

existence of a doubly stochastic matrix M such that B = MA.

The following theorem is parallel to the Schur-Ostrowski theorem.

Theorem 3.2. Let fixx, . . . , xn) be a function defined over the domain D. Let

P = (Pv • • ■ 'Pn) be a set of points partially ordered by "-» ". Then

f(ax, . . . , an) > f(bx, . . . , b„)

for all A majorizing B on P if and only iff is such that for every i andj, /», -» pj

implies

-J->^T-    over all X ED.
ox¡       óXj

Proof. The "only if part is trivial. The "if part can be proved as follows.

If there is a flow transforming A into A', then clearly, f(A) > f(A'). From

Theorem 3.1, there exists a finite set of flows transforming A into B.

Therefore Theorem 3.2 follows.
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Corollary. Let f(xx, . . . , x„) be a function defined over domain D. Let

P = (px, . . . ,pn) be a vector. Then

f(ax,...,an)>f(bx,...,bn)

for all A majorizing B (in the vector sense) if and only iff is such that

(JU)*-»°-
4. Conclusions. In this paper we extend the classical concept of set majori-

zation to the case where the set is partially ordered. We give a mathematical

definition of this new concept which includes "vector majorization" as a

special case. Let P and P' be two partial orders on the same set such that

p, -*pj in P implies p, -^pj in P'. Then surprisingly, it is not true that if A

majorizes B on the set under P', then A majorizes B on the set under P (nor

conversely) as is clear from the following example:

Example. Let P = (p, ->p2,p, ->p3), P' = (p, -»p2-»P3)> A = (xx =

.5, x2 = .5, x3 = 0), B = (yx = .4, y2 = .3,_y3 = .3). Then A majorizes B on

P' but not on P.

We also prove a property which characterizes majorization on a partially

ordered set. Quite unexpectedly, the proof relies on a theorem of Shapley on

convex games. Furthermore, we prove a theorem which is parallel to the

Schur-Ostrowski theorem in comparing two functions except that the set

majorization condition is replaced by a condition relating to the new notion

of majorization.

The author wishes to thank a referee for suggesting the corollary of

Theorem 3.1.
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