GROUP RINGS IN WHICH EVERY LEFT IDEAL IS A RIGHT IDEAL

P. MENAL

ABSTRACT. Let K[G] denote the group ring of G over the field K. In this note we characterize those group rings in which all left ideals are right ideals.

Let R be a ring. We say that R is l.i.r.i. if every left ideal is a right ideal. A ring is l.a.r.i. if every left annihilator is a right ideal. Our notation follows that of [2].

The main results are

THEOREM I. Let K be a field and let G be a nonabelian periodic group. Then if K[G] is l.a.r.i. one of the following occurs

- (i) Char K = 0 and G is a Hamiltonian group such that for each odd exponent, n, of G the quaternion algebra over the field $K(\xi_n)$, where ξ_n is a primitive nth root of unity, is a division ring.
- (ii) Char K = 2 and K does not contain any primitive cube root of unity. Moreover $G \cong Q \times A$, where Q is the quaternion group of order 8 and A is abelian in which each element has odd order and if n is an exponent for A, the least integer m > 1 satisfying $2^m \equiv 1 \pmod{n}$ is odd.

Conversely if K[G] satisfies either (i) or (ii), then K[G] is l.i.r.i. and, in particular, it is l.a.r.i.

Observe that if char K > 2 and G is periodic, then K[G] is l.a.r.i. if and only if G is abelian.

THEOREM II. Let K[G] denote the group ring over a nonabelian group. Then the following are equivalent

- (i) K[G] is l.i.r.i.
- (ii) G is locally finite and if $\alpha, \beta \in K[G]$ with $\alpha\beta = 0$, then $\beta\alpha = 0$.
- (iii) G is locally finite and K[G] is l.a.r.i.

If we combine the above theorems we get necessary and sufficient conditions for K[G] to be l.i.r.i.

By using the antiautomorphism of K[G] given by $\sum_{x \in G} k_x x \mapsto \sum_{x \in G} k_x x^{-1}$ we see that K[G] is l.i.r.i. (l.a.r.i.) if and only if K[G] is r.i.l.i. (r.a.l.i.).

Received by the editors February 2, 1978.

AMS (MOS) subject classifications (1970). Primary 16A26.

Key words and phrases. Group ring, quaternion algebra, Hamiltonian group.

LEMMA 1. (i) K[G] is l.i.r.i. if and only if for every finitely generated subgroup $H \subseteq G$, K[H] is l.i.r.i. (ii) If K[G] is l.i.r.i., then all subgroups of G are normal. (iii) Suppose that G is periodic. If K[G] is l.a.r.i., then all subgroups of G are normal.

PROOF. (i) First we suppose that for every finitely generated subgroup $H \subseteq G$, K[H] is l.i.r.i. Let $I \subseteq K[G]$ be a left ideal. Let $\alpha \in I$, $g \in G$. We set $H = \langle g, \operatorname{Supp} \alpha \rangle$. Then $I \cap K[H]$ is a left ideal of K[H] and hence $I \cap K[H]$ is an ideal of K[H], since H is finitely generated. Now $g \in H$ and $\alpha \in I \cap K[H]$ so $\alpha g \in I \cap K[H] \subseteq I$. Therefore we have shown that $Ig \subseteq I$ for any $g \in G$ and so I is a right ideal. Conversely let H be a subgroup of G and suppose that $I \subseteq K[H]$ is a left ideal of K[H]. Let $\{x_i\}$ be a set of left coset representatives for H in G. Then K[G] is a free right K[H]-module with basis $\{x_i\}$. Thus we have $K[G] = \dot{\Sigma}x_iK[H]$. Denote $\dot{\Sigma}x_iI$ by J. Clearly J is a left ideal of K[G]. If we suppose that K[G] is l.i.r.i., then we have that J is a right ideal of K[G]. Let $h \in H$. Then

$$Ih \subseteq Jh \cap K[H] \subseteq J \cap K[H] = I$$

and so I is a right ideal of K[H].

- (ii) In order to prove that all subgroups of G are normal it suffices to see that all cyclic subgroups are normal. Let $a,g \in G$. Consider the left ideal I = K[G](1-a). Then I is an ideal, since K[G] is l.i.r.i. Thus $g^{-1}(1-a)g \in I$ and $1-g^{-1}ag = \alpha(1-a)$ for a suitable element $\alpha \in K[G]$. Now we use the $K[\langle a \rangle]$ -homomorphism $\theta \colon K[G] \to K[G]$ in which $\sum_{x \in G} k_x x \mapsto \sum_{x \in \langle a \rangle} k_x x$ and we obtain $1 \theta(g^{-1}ag) = \theta(\alpha)(1-a)$. Since 1-a is not invertible we have that $\theta(g^{-1}ag) \neq 0$. Hence $g^{-1}ag \in \langle a \rangle$.
- (iii) Suppose that G is periodic and K[G] is l.a.r.i. Let $g \in G$. Set $H = \langle g \rangle$. Lemma 1.2 [2, Chapter 3] yields that $l(\hat{H}) = K[G]\omega(K[H])$. On the other hand we have that $H = \{x \in G: x 1 \in K[G]\omega(K[H])\}$. By hypothesis $l(\hat{H})$ is an ideal, then it is easy to see that H is normal in G.

We recall that a nonabelian group G such that all subgroups are normal is a Hamiltonian group, that is [1, Theorem 12.5.4]

$$G = O \times A \times B$$

where Q is the quaternion group of 8 elements, A is an abelian group such that every element has odd order, and B is an abelian group of exponent 2. For the rest of this paper we fix this notation.

LEMMA 2. Suppose that K[G] is l.a.r.i. Let $\alpha, \beta \in K[G]$ such that $\alpha\beta = 0$. Then $\beta\alpha = 0$.

PROOF. Suppose I and J are ideals of K[G] with IJ = 0. Then JI is an ideal of K[G] and tr(JI) = tr(IJ) = 0. Thus JI = 0 since any ideal of trace zero is zero. Now let K[G] be l.a.r.i. If $\alpha, \beta \in K[G]$ with $\alpha\beta = 0$, then IJ = 0 where $I = K[G]\alpha K[G]$ and $J = K[G]\beta K[G]$. Thus JI = 0 and hence $\beta\alpha = 0$.

In characteristic 2 we need the following

206 P. MENAL

LEMMA 3. Let K be a field of characteristic 2. Suppose that K does not contain any primitive cube root of unity. Put

$$Q = \langle a, b | a^2 = b^2, a^4 = 1, b^{-1}ab = a^{-1} \rangle.$$

Then if $\alpha = \sum k_x x \in K[\langle a \rangle]$ such that $|\alpha| = 1$ (where $|\alpha| = \sum k_x$) we have

$$1 + (\alpha b)^2 = (1 + a^2)u$$

where $u \in K[\langle a \rangle]$ is a unit.

PROOF. Let $\alpha = k_1 + k_2 a + k_3 a^2 + k_4 a^3 \in K[\langle a \rangle]$ with $\sum k_i = 1$. Then a calculation proves that

$$1 + (\alpha b)^2 = (1 + a^2)(1 + (k_1 + k_3)(k_2 + k_4)a).$$

Since Q is a 2-group and char K=2 we know that K[Q] is a local ring whose maximal ideal is $\{\alpha \in K[Q]: |\alpha|=0\}$. Suppose by contradiction that $1+(k_1+k_3)(k_2+k_4)a$ is not a unit. Then $(k_1+k_3)(k_2+k_4)=1$, and since $\sum k_i=1$ we see that k_1+k_3 is a primitive cube root of unity. Since K does not contain any primitive cube root of unity we have a contradiction.

THE PROOF OF THEOREM I. Suppose that G is a nonabelian periodic group and K[G] is l.a.r.i. Then Lemma 1(iii) yields that $G = Q \times A \times B$. First we observe that the case char K > 2 is not possible. Since K[G] is l.a.r.i. clearly K[Q] so is. But in char > 2 we have

$$K[Q] \cong K \dotplus K \dotplus K \dotplus K \dotplus M(2, K)$$

and this is a contradiction, since M(2, K) is not l.a.r.i. Suppose char K = 0. Let n be an exponent for A and let $x \in A$ such that o(x) = n. Then $K[\langle x \rangle]$ is a direct sum of fields

$$K[\langle x \rangle] \simeq K(\xi_n) \dotplus L_1 \dotplus \cdots \dotplus L_m$$

where $o(\xi_n) = n$. On the other hand we have

$$K[Q] \simeq K \dotplus K \dotplus K \dotplus K \dotplus ((-1, -1)/K)$$

where the last summand is the quaternion algebra over K. Since $K[Q \times \langle x \rangle] \cong K[Q] \otimes_K K[\langle x \rangle]$ we get that $((-1, -1)/K) \otimes K(\xi_n) \cong ((-1, -1)/K(\xi_n))$ is a direct summand of $K[Q \times \langle x \rangle]$ and so $((-1, -1)/K(\xi_n))$ is l.a.r.i. Therefore the quaternion algebra over $K(\xi_n)$ is a division ring. Conversely suppose that K[G] satisfies (i). Then we will prove that K[G] is l.i.r.i. It follows from Lemma 1(i) that it suffices to consider G finite. Then

$$G \cong Q \times A \times (Z/2Z) \times \cdots \times (Z/2Z)$$

(*m* copies of $\mathbb{Z}/2\mathbb{Z}$) and we get

$$K[G] \cong K[Q \times A] \dotplus \cdots \dotplus K[Q \times A]$$

 $(2^m \text{ copies of } K[Q \times A])$. Clearly we can suppose that $G = Q \times A$. Then it is easy to see that

$$K[G] \cong K[A] \dotplus K[A] \dotplus K[A] \dotplus K[A] \dotplus K[A] \dotplus \prod_{i} \left(\frac{-1, -1}{K(\xi_{i})}\right)$$

where $o(\xi_i)$ are exponents for A. Hence we see that K[G] is a product of l.i.r.i. rings. Therefore K[G] is l.i.r.i.

Char K=2. First we observe that if K contains a primitive cube root of unity then K[G] is not l.a.r.i. From Lemma 2 it suffices to exhibit elements $\alpha, \beta \in K[G]$ such that $\alpha\beta = 0$ but $\beta\alpha \neq 0$. If ξ is a primitive cube root of unity we set

$$\alpha = (1 + \xi(1 + \xi a)b),$$

$$\beta = (1 + \xi(1 + \xi a)b)(1 + a)b.$$

A calculation proves that $\alpha\beta = 0$ but $\beta\alpha \neq 0$. We now prove that $G = Q \times A$. If this is not the case there exists an element $x \in G - Q$ of order 2 which centralizes G. Again there exist elements

$$\alpha = 1 + (a + b + ab)x,$$

 $\beta = (a + b + ab)(1 + a) + (1 + a)x,$

such that $\alpha\beta = 0$ but $\beta\alpha \neq 0$ and so K[G] is not l.a.r.i. Let n be an exponent for A and $x \in A$ such that o(x) = n. Since char K = 2 we have that $K[\langle x \rangle]$ is semisimple, and so

$$K[\langle x \rangle] = K(\xi_n) \dotplus \cdots \dotplus L_m \text{ where } o(\xi_n) = n.$$

Then $K[Q] \otimes K(\xi_n) \cong K(\xi_n)[Q]$ is a direct factor of $K[Q \times \langle x \rangle]$. By hypothesis $K(\xi_n)[Q]$ is l.a.r.i. By above $K(\xi_n)$ does not contain any primitive cube root of unity. Therefore $2 \nmid m$, where m is the degree of the extension $(Z/2Z(\xi_n))/(Z/2Z)$. But m is precisely the least integer satisfying $2^m \equiv 1 \pmod{n}$. Conversely suppose that K[G] satisfies (ii). We shall prove that K[G] is l.i.r.i. Again from Lemma 1(i) we can consider that G is finite. Then

$$K[A] \cong K(\xi_i) \dotplus \cdots \dotplus K(\xi_m)$$

and so

$$K[Q \times A] \cong K(\xi_1)[Q] \dotplus \cdots \dotplus K(\xi_m)[Q].$$

By hypothesis the field $K(\xi_i)$ does not contain any primitive cube root of unity. Since a product of l.i.r.i. rings is l.i.r.i., we have only to prove that if a field K does not contain any primitive cube root of unity, then K[Q] is l.i.r.i. Let $I \subseteq K[G]$ be a left ideal. Suppose that $\alpha \in I$. We can write α in the form $\alpha = \alpha_1 + \alpha_2 b$, where $\alpha_i \in K[\langle a \rangle]$. The first task is to show that $\alpha_i(1 + a^2) \in I$. Note that if $\alpha_1(1 + a^2) \in I$, then, since $1 + a^2$ is central, $\alpha_2 b(1 + a^2) \in I$. Again $\alpha_2(1 + a^2)$ is central and therefore $b\alpha_2(1 + a^2) \in I$. Since I is a left ideal $\alpha_2(1 + a^2) \in I$. Thus we need only to prove that $\alpha_1(1 + a^2) \in I$. If α is a unit, then I = K[Q]. Thus we may suppose that α is not a unit. Then we have $|\alpha_1| + |\alpha_2| = 0$. Suppose that α_1 is a unit. Then $1 + \alpha_1^{-1}\alpha_2b \in I$. Clearly $1 + (\alpha_1^{-1}\alpha_2b)^2 \in I$, so Lemma 3 yields that $1 + a^2 \in I$. Hence $\alpha_1(1 + a^2) \in I$. If α_1 is not a unit, then we have $|\alpha_1| = 0$ and hence $|\alpha_2| = 0$. Therefore $\alpha_1 = \beta_1(1 + a)$ and $\alpha_2 = \beta_2(1 + a)$ for suitable elements $\beta_i \in K[\langle a \rangle]$. Thus $\alpha = (\beta_1 + \beta_2 ab)(1 + a)$. If $\beta_1 + \beta_2 ab$ is a unit we obtain that $1 + a \in I$ and

208 P. MENAL

so $\alpha_1(1+a^2)=\alpha_1(1+a)^2\in I$. Hence we may consider that $|\beta_1|+|\beta_2|=0$. If β_1 is a unit, then $(1+\beta_1^{-1}\beta_2ab)(1+a)\in I$. Again we use Lemma 3 and we get that $(1+a^2)(1+a)\in I$. Thus $\alpha_1(1+a^2)=\beta_1(1+a)(1+a^2)\in I$. Finally if β_1 is not a unit we have $\beta_1=\gamma_1(1+a)$ for certain $\gamma_1\in K[\langle a\rangle]$. Therefore $\alpha_1(1+a^2)=\gamma_1(1+a^2)(1+a^2)=0$ and, certainly, $\alpha_1(1+a^2)\in I$. Now we will prove that $\alpha x\in I$ for any $x\in Q$. Since $Q=\langle a,b\rangle$ it suffices to see that $\alpha a,\alpha b\in I$. By using the automorphism of Q given by $a\mapsto b$, $b\mapsto a$ we see that we have only to prove that $\alpha a\in I$. $\alpha_2(1+a^2)$ is central and so

$$\alpha a = \alpha_1 a + \alpha_2 b a = a \alpha + a b \alpha_2 (1 + a^2).$$

Since $a\alpha \in I$ and by above $\alpha_2(1 + a^2) \in I$, the result follows.

THE PROOF OF THEOREM II. (i) \Rightarrow (ii). It follows from Lemma 1(ii) that all subgroups of G are normal. Since G is not abelian, it is a Hamiltonian group and, clearly, locally finite. Since if a ring is l.i.r.i., then it is l.a.r.i. Lemma 2 completes the proof. Trivially (ii) implies (iii). It follows from Theorem I that (iii) implies (i). The result follows.

REFERENCES

- 1. M. Hall, Jr., The theory of groups, Macmillan, New York, 1959.
- 2. D. S. Passman, The algebraic structure of group rings, Wiley-Interscience, New York, 1977.

Universitat Autònoma, Secció de Matemàtiques, Bellaterra, Barcelona, Espanya