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GROUP RINGS IN WHICH EVERY

LEFT IDEAL IS A RIGHT IDEAL

P. MENAL

Abstract. Let K[G] denote the group ring of G over the field K. In this

note we characterize those group rings in which all left ideals are right

ideals.

Let Äbea ring. We say that R is l.i.r.i. if every left ideal is a right ideal. A

ring is l.a.r.i. if every left annihilator is a right ideal. Our notation follows that

of [2].

The main results are

Theorem I. Let K be a field and let G be a nonabelian periodic group. Then

if K[G] is l.a.r.i. one of the following occurs

(i) Char K = 0 and G is a Hamiltonian group such that for each odd

exponent, n, of G the quaternion algebra over the field K(Ha), where £, is a

primitive nth root of unity, is a division ring.

(ii) Char K = 2 and K does not contain any primitive cube root of unity.

Moreover G — Q X A, where Q is the quaternion group of order 8 and A is

abelian in which each element has odd order and if « is an exponent for A, the

least integer m > 1 satisfying 2m = 1 (mod «) is odd.

Conversely if K[G] satisfies either (i) or (ii), then K[G] is l.i.r.i. and, in

particular, it is l.a.r.i.

Observe that if char A > 2 and G is periodic, then K[G] is La.r.i. if and

only if G is abelian.

Theorem II. Let K[G] denote the group ring over a nonabelian group. Then

the following are equivalent

(i)K[G] is l.i.r.i.

(ii) G is locally finite and if a,ß G K[G] with aß = 0, then ßa - 0.

(iii) G is locally finite and K[G] is l.a.r.i.

If we combine the above theorems we get necessary and sufficient condi-

tions for K[G] to be l.i.r.i.

By using the antiautomorphism of K[G] given by 2xeG kxx h»

2xeG kxx~x we see that K[G] is l.i.r.i. (l.a.r.i.) if and only if K[G] is r.i.l.i.

(r.a.l.i.).
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Lemma 1. (i) K[G] is l.i.r.i. if and only if for every finitely generated

subgroup H E G, K[H] is l.i.r.i. (ii) If K[G] is l.i.r.i., then all subgroups of G

are normal, (iii) Suppose that G is periodic. If K[G] is l.a.r.i., then all

subgroups of G are normal.

Proof, (i) First we suppose that for every finitely generated subgroup

HEG, K[H] is l.i.r.i. Let I E K[G] be a left ideal. Let a E I, g E G. We

set H = (g, Supp a>. Then / n K[H] is a left ideal of K[H] and hence

/ n K[H] is an ideal of K[H], since H is finitely generated. Now g E H and

a E I n K[H] so ag E I n K[H] E I. Therefore we have shown that Ig E

I for any g E G and so / is a right ideal. Conversely let H be a subgroup of G

and suppose that / E K[H] is a left ideal of K[H]. Let {*,} be a set of left

coset representatives for H in G. Then K[G] is a free right K[H]-module with

basis {*,}. Thus we have K[G] = Íx¡K[H]. Denote Sx,/ by J. Clearly J is a

left ideal of K[G]. If we suppose that K[G] is l.i.r.i., then we have that J is a

right ideal of K[G]. Let h E H. Then

IhEJhnK[H]EJn K[H] = /

and so / is a right ideal of K[H].

(ii) In order to prove that all subgroups of G are normal it suffices to see

that all cyclic subgroups are normal. Let a,g E G. Consider the left ideal

/ = K[G](l — a). Then / is an ideal, since K[G] is l.i.r.i. Thus g~'(l - a)g

E I and 1 - g~xag = a(l — a) for a suitable element a E K[G]. Now we

use the Ä^<a>]-homomorphism 9: K[G]^>K[G] in which 2xeG kxx\-+

2*e<a> kxx and we obtain 1 — 9(g~lag) = 9(a)(l — a). Since 1 — a is not

invertible we have that 9(g~xag) ^ 0. Henceg~lag E <a>.

(iii) Suppose that G is periodic and K[G] is l.a.r.i. Let g E G. Set H = {g}.

Lemma 1.2 [2, Chapter 3] yields that 1(H) = K[G]u>(K[H]). On the other

hand we have that H = {x E G: x - 1 E K[G]u)(K[H])}. By hypothesis

1(H) is an ideal, then it is easy to see that H is normal in G.

We recall that a nonabelian group G such that all subgroups are normal is

a Hamiltonian group, that is [1, Theorem 12.5.4]

G = Q X A X B

where Q is the quaternion group of 8 elements, A is an abelian group such

that every element has odd order, and B is an abelian group of exponent 2.

For the rest of this paper we fix this notation.

Lemma 2. Suppose that K[G] is l.a.r.i. Let a,ß E K[G] such that aß = 0.

Then ßa = 0.

Proof. Suppose / and / are ideals of K[G] with IJ = 0. Then // is an ideal

of K[G] and tr(//) = tr(IJ) = 0. Thus JI = 0 since any ideal of trace zero is

zero. Now let K[G] be l.a.r.i. If a,ß E K[G] with aß = 0, then IJ = 0 where

/= K[G]aK[G] and J = K[G]ßK[G]. Thus 7/ = 0 and hence ßa = 0.

In characteristic 2 we need the following
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Lemma 3. Let K be afield of characteristic 2. Suppose that K does not contain

any primitive cube root of unity. Put

Q = (a,b\a2 = b2, a* = 1, b~xab = a~x).

Then if a = 1.kxx G K[(a}] such that \a\ = 1 (where \a\ = 2&x) we have

1 + (ab)2 = (1 + a2)u

where u G A[<a>] is a unit.

Proof. Let a = kx + k2a + k3a2 + kAa3 G A[<a>] with 2&, = 1. Then a

calculation proves that

1 + (ab)2 = (1 + a2)(\ + (kx + k3)(k2 + k4)a).

Since Q is a 2-group and char A = 2 we know that K[Q] is a local ring whose

maximal ideal is {a G K[Q]: \a\ = 0}. Suppose by contradiction that 1 + (kx

+ k3)(k2 + k4)a is not a unit. Then (kx + k3)(k2 + k4) = 1, and since 2/c, =

1 we see that kx + k3 is a primitive cube root of unity. Since K does not

contain any primitive cube root of unity we have a contradiction.

The proof of Theorem I. Suppose that G is a nonabelian periodic group

and A[G] is l.a.r.i. Then Lemma l(iii) yields that G = Q X A X B. First we

observe that the case char A > 2 is not possible. Since A[G] is l.a.r.i. clearly

K[Q] so is. But in char > 2 we have

A[e]ssA:-¡-A+A-r-A+ M(2, A)

and this is a contradiction, since M(2, K) is not l.a.r.i. Suppose char A = 0.

Let « be an exponent for A and let x G A such that o(x) = n. Then A[<x>] is

a direct sum of fields

K[(x)] ^ K(Q + Lx + ■■■ +Lm

where o(£n) = n. On the other hand we have

K[Q] a K+ K+ K+ K+ ((-1, -1)/A)

where the last summand is the quaternion algebra over A. Since K[Q X <x>]

m K[Q] ®*A[<x>] we get that ((- 1, - 1)/A) ® K(Q m ((-1, - l)/K(Q)
is a direct summand of K[Q x <x>] and so ((—1, -1)/A(£„)) is l.a.r.i.

Therefore the quaternion algebra over A(£„) is a division ring. Conversely

suppose that A[G] satisfies (i). Then we will prove that A[G] is l.i.r.i. It

follows from Lemma l(i) that it suffices to consider G finite. Then

G s Q x A X (Z/2Z) X • • • X (Z/2Z)

(m copies of Z/2Z) and we get

K[ G] - K[ Q X A ] + • • • + A[ Q X A ]

(2m copies of K[Q X ^4]). Clearly we can suppose that G = Q X A. Then it is

easy to see that

A[G] =A[,4] + K[A] + K[A] + K[A] + II (
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where o(fi,) are exponents for A. Hence we see that K[G] is a product of Li.r.i.

rings. Therefore K[G] is Li.r.i.

Char K — 2. First we observe that if K contains a primitive cube root of

unity then K[G] is not l.a.r.i. From Lemma 2 it suffices to exhibit elements

a,ß e K[G] such that aß = 0 but ßa =£ 0. If £ is a primitive cube root of

unity we set

« « (1 + fi(l + &)*),

0 = (1 + fi(l + fia)6)(l + a)b.

A calculation proves that aß = 0 but /?a ¥= 0. We now prove that G = Q X

A. If this is not the case there exists an element x E G — Q of order 2 which

centralizes G. Again there exist elements

a = l+(a-t-6-l- ab)x,

ß = (a + b + ab)(l + a) + (1 + a)x,

such that aß = 0 but ßa ¥= 0 and so /T[G] is not l.a.r.i. Let n be an exponent

for A and x E A such that o(x) = n. Since char K = 2 we have that AT[<x>]

is semisimple, and so

*[<*>] = *(fi„) + • • • +Lm where o(Q = «.

Then #[ß] <g> K(Q » AT(fin)[ß] is a direct factor of K[Q X <x>]. By hy-

pothesis K(£n)[Q] is l.a.r.i. By above K(£n) does not contain any primitive

cube root of unity. Therefore 2\m, where m is the degree of the extension

(Z/2Z(fi„))/(Z/2Z). But m is precisely the least integer satisfying 2m = 1

(mod n). Conversely suppose that K[G] satisfies (ii). We shall prove that

K[G] is l.i.r.i. Again from Lemma l(i) we can consider that G is finite. Then

K[A] ^ K(i) + ■ • ■ +K(U

and so

K[Q XA] «*(€,)[ ß] + • • • +K(U[Q].

By hypothesis the field K(£¡) does not contain any primitive cube root of

unity. Since a product of l.i.r.i. rings is l.i.r.i., we have only to prove that if a

field K does not contain any primitive cube root of unity, then K[Q] is Li.r.i.

Let / E K[G] be a left ideal. Suppose that a E I. We can write a in the form

a = ax + a2b, where a¡ E K[(a}]. The first task is to show that a,(l + a2) E

I. Note that if a,(l + a2) E I, then, since 1 + a2 is central, a2b(\ + a2) E I.

Again a2(\ + a2) is central and therefore ba2(\ + a2) E I. Since / is a left

ideal a2(l + a2) E I. Thus we need only to prove that a,(l + a2) E I. If a is

a unit, then / = K[Q]. Thus we may suppose that a is not a unit. Then we

have |a,| + \a2\ = 0. Suppose that a, is a unit. Then 1 + aj" la2b E I. Clearly

1 + (ax~la2b)2 E I, so Lemma 3 yields that 1 + a2 E I. Hence a,(l + a2) E

I. If a, is not a unit, then we have \ax\ = 0 and hence \a2\ = 0. Therefore

ax = ßx(l + a) and a2 = ß2(\ + a) for suitable elements /?, E K[(a}]. Thus

a = (/?, + ß2ab)(l + a). If ßx + ß2ab is a unit we obtain that 1 + a E I and
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so a,(l 4- a2) = a,(l 4- a)2 G I. Hence we may consider that |/},| + \ß2\ =

0. If ßx is a unit, then (1 + ß{~ lß2ab)(\ + a) G I. Again we use Lemma 3 and

we get that (1 + a2)(\ + a)G I. Thus ax(\ + a2) = 0,(1 + a){\ + a2) G I.

Finally if ßx is not a unit we have ßx = y,(l + a) for certain y, G A[<a>].

Therefore a,(l + a2) = y,(l 4- a2)(l 4- a2) = 0 and, certainly, a,(l 4- a2) £

F Now we will prove that ax G I for any x G Q. Since Q = <a, 6> it suffices

to see that aa,ab G I. By using the automorphism of Q given by a\-+b,

b H» a we see that we have only to prove that aa £ F a2(\ + a2) is central

and so

aa = axa 4- a2¿a = aa 4- a¿>a2(l 4- a2).

Since aa G I and by above a2(\ 4- a2) £ /, the result follows.

The proof of Theorem II. (i) => (ii). It follows from Lemma l(ii) that all

subgroups of G are normal. Since G is not abelian, it is a Hamiltonian group

and, clearly, locally finite. Since if a ring is l.i.r.i., then it is l.a.r.i. Lemma 2

completes the proof. Trivially (ii) implies (iii). It follows from Theorem I that

(iii) implies (i). The result follows.
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