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PERIODIC MODULES WITH LARGE PERIODS

JON F. CARLSON1

Abstract. Let G be a nonabelian group of order p3 and exponent/), where/)

is an odd prime. Let A be a field of characteristic p. In this paper it is

proved that there exist periodic AG-modules whose periods are 2p. Some

examples of such modules are constructed.

1. Introduction. Let G be a finite p-group, and let A be a field of

characteristic p, where p is a prime integer. If M is a AG-module then there

exists a projective AG-module F such that there is an epimorphism <p:

F -» A/. The kernel of rp can be written as ß(Af) © E where E is projective

and ß(M) has no projective submodules. It is well known [5] that the

isomorphism class of il(M) is independent of the choice of F and tp.

Inductively we define S2"(Af) = ß(ß"_1(A/)) for all integers « > 1. A AG-

module is said to be periodic if there exists an integer « > 0 such that

M as ß"(Af ) © P where F is a projective AG-module. If n is the smallest such

integer then « is called the period of M.

Recently it has been proved that, when G is abelian, every periodic

AG-module has period 1 or 2 (see [2] or [4]). It is well known that if G is a

quaternion group, then every AG-module has period 1, 2 or 4. Until now

there were no known examples of periodic modules with periods other than 1,

2, or 4 (see [1]). In this paper we show that if G is a group of order p3 and

exponent p for p an odd prime, then there exist periodic AG-modules with

period 2p. Some examples along with their minimal projective resolutions are

explicitly constructed.

2. Notation and preliminaries. Let p be an odd prime integer. Suppose that

A is a field of characteristic p. Throughout the rest of this paper G will denote

the group of order p3 and exponent p. Then G is generated by two elements x

and y. If z = x~ly~xxy, then we have the relations xp = yp = zp = 1,

xz = zx, andyz = zy. Let H be the subgroup generated by x and z. Let

H =   2 h = (x - \y~\z - Vf'' G KH.
h£H

Recall that a Aiï-module L is free if and only if DimKHL = (l/p2)DixnKL.

If M is a AG-module, then MH is its restriction to a Ai7-module.
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The remainder of this section is devoted to establishing some combinatorial

relations which will be needed in the next section. For a E K, let / = 1(a) =

(y - 1) - a(x - 1) E KG.

Lemma 2.1.1" = k(z - If-1 where

*-2(-i)'i('W'-'-
r-l p\t!

Proof. Note that / = (a — 1) + (y — ax). Therefore

l" = (a - If + (y - axp) = a" - 1 + (y - axf.

In the expansion of (y — axy the coefficient on ( — a)' is the sum of all

possible products of x's and y's with x occurring t times and y occurring

p — t times. Each such product can be written in the form x'yp~'zs for some

s = 0, 1, ...,/»- 1. Suppose that in each product the left-most letter (either

x or y) is moved to the furthest right position. This operation amounts to

multiplying the product by z'. However the entire sum remains unchanged.

Hence for t = 1, ...,/»- 1, the coefficient on ( — a)' is

%?(>'-y-?(>'~'(2-ir'

This proves the lemma.

Lemma 2.2. There exists an element v E KG such that Ik — kl = v(z — 1).

Moreover if a is an element of K which is not in the prime field Fp, then v is a

unit in KG.

Proof. Now Ik — kl = (yk — ky) — a(xk — kx). So

¡k-ki= 2 (-\y-(p)a'xy-'+l(z-' - 1)
f=l pV 11

-2 (-l)'-(P)a'+1x'+y-'(l - z').
,=i /» V 11

Note that z~' - 1 = zp~' - 1 = (z - l)(zp~'~l + • • • + z + 1). Hence Ik

— kl = v(z — 1) where

j> = axz-1 — apyz~l

,?,<-" 7 [U,)<"-'-2+"-+"

(>" + •••  +1) i'+'r'+Ln-'
y

Let t: .KG -+ Kbe the augmentation homomorphism given by e(g) = 1 for all

g G G. Then
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a'+x
•w--°'-'?/-1)'[j(,i,)<-'-1)-?(')('-')

= a — ap.

The lemma follows from the fact that v is a unit if and only if e(p) ¥= 0.

Now if r = 1, . . . , p — 1, then

r-\

lrk - klr = 2 Hlk - kl)lr~x-J
7-0

r-1

= 2 lJ v lr-x-j(z - 1).
j = 0

Therefore

(FA: - klr)(z - XY'2 = /-/'-'Kz - ífl1. (2.3)

3. The main result. Let A be a field with odd characteristic p. Let G,

/ = 1(a), k, p be as in the previous section. Let W be the left ideal in AG

given as W = KGl + KG(z - 1). We define M = M(a) = KG/W. Then M

is a cyclic AG-module generated by m = 1 4- W where (z — l)w = 0 and

(y — \)m = a(x — \)m. The dimension of M isp, and the restriction of M to

a A<x>-module is isomorphic to A<x>.

Theorem 3.1. If a £ Fp (the prime field), then M(a) is aperiodic KG-mod-

ule with period 2p.

The proof consists of constructing a minimal free resolution for M. Let

F = AGa © KGb be a free module with generators a and b. For each

/ = 1, . . . ,p - 1, let

m(i, 1) = l'a - (z - \)b,

m(i, 2) = k(z - \f-2a - lp-'b.

Define M¡ to be the submodule of F generated by m(i, 1) and m(i, 2).

Lemma 3.2. Dim M¡ > p3 + p.

Proof. Now Hm(i, 1) = (y - \)'Ha, and Hm(i, 2) = - (y - ly-'Hb.

Therefore the A//-module

p-i-\ i-\
E =    2    KH(y - \ym(i, 1) © 2 KH(y - \ym(i, 2)

j = 0 7 = 0

is a free A//-submodule of (M¡)H whose A/7-socle is the subspace with a basis

consisting of the elements (y - I)'Ha, / = /',... ,p - 1, and (y — YfHb,

s = p — i, . . . ,p — 1. Also Dim E = p3. Let

m(i, 3) = k(z - iy~2m(i, 1) - llm(i, 2)

= (kl' - Vk)(z - \y~2a

= -íí'-xp(z - \y-xa.
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The last equality follows from (2.3). By Lemma 2.2,

(x - \y~lp-lm(i, 3) = -i(y - l),_1//a g E.

Let

L = KH v~lm(i, 3) = K{x)v~xm(i, 3).

Then L (l E = 0 and Dim L = p. Consequently L © E is a subspace of M¡

of dimension/»3 + /».

Lemma 3.3. Mx s ß2(M) and Dim A/, = /»3 + /».

Proof. From the definition we know that W ss ß(M). We have an exact

sequence

0^>Q2(M)^>F^W^0

where <p is defined by <p(a) = z — 1 and <p(Z>) = /. Then

9(«(1, 1)) = /(z - 1) - (z - 1)/ = 0.

Also <p(m(l, 2)) = k(z - If"1 - lp = 0, by Lemma 2.1. Hence M, is in the

kernel of <p. Since Dim W = p3 — p, the dimension of the kernel of <p is

p3 + p. By Lemma 3.2, Mx is the kernel of <p.

Lemma 3.4. For each i = 1, ...,/> — 2, ß2(A/,) » Aí1+1. Moreover Dim A/(

= p3 + P for all i = 1, ...,/» — 1.

Proof. Assume, by induction, that Dim M¡ = p3 + p. Note that

lf-hn{i, 1) - (z - \)m(i, 2) = 0. (3.5)

We also have that

lk(z - \y~2m(i, 1) - l'+lm(i, 2) = -l(llk - kl')(z - \y~2a

= -iv(z-\y-xm(i, 1).

Therefore

[/* + «>(z - l)](z - \y~2m(i, 1) - l,+lm(i, 2) = 0. (3.6)

Let F' = KGc © KGd be the free ATG-module with generators c and ¿/. We

can form the exact sequence

0->fi(M,.)^F'^A/,.-»0,

where \¡/(c) = m(i, 1) and yp(d) = m(i, 2). By (3.5) and (3.6), the kernel of tp

contains the elements

ux = i'-'c - (z - l)rf

and

u2 =[ik + iv(z - l)](z - iy_2c - li+ld.

Now Hux =(y - ly-'Hc, Hu2 = (y - l)i+1Hd. Let

«3 = ¿(z - \y~lc - V(z - \)d = Vux.
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Clearly (z - iy~xu3 = 0 and

(x - \y-\z - \y~2u3= - (y - \yñd.

By an argument similar to that in Lemma 3.2, we get that the dimension of

the module L, generated by ux and u2, is at least p3 — p. Since the dimension

of the kernel of \¡/ isp3 — p, L = ß(M,).

We can form the exact sequence

0^ß2(A/,.)-»F-tL^0

where 0(a) = ux and 0(b) = u2. It is easy to see that

0(m(i 4- 1, 1)) = li+xux - (z - \)u2 = 0.

Also

0(m(i 4- 1, 2)) = k(z - \y~2ux - l"-'-1^

= [kip-' - i'-'k - ivip-'-l(z - i)](z - iy-2c = 0,

by (2.3). Consequently Mi+X is in the kernel of 0. By Lemma 3.2, A/1+1 is the

kernel of 0.

To conclude the proof of Theorem 3.1 we need only the following.

Lemma 3.7. ü2(Mp_x) at M.

Proof. We have an exact sequence

0^Q(Mp_x)^F'^Mp_x-+0

where F' = AGc © KGd, o(c) = m(p - 1, 1) and o(d) = m(p - 1, 2). Let

m = le - (z - \)d. Then o(u) = 0. Now Hu = (y - \)Hc and

(x - \y~x(z - vy-2i»-xu = - (v - \y~lHd*o.

By an argument similar to that of Lemma 3.2, we get that Dim AGm > p3 —

p. Therefore the kernel of o is AGw = Q(Mp_x).

Define r: KG -» AGm by t(1) = u. The kernel of t has dimension p and is

isomorphic to ß2(A^_,). Let w = (z - l^"1/*"1. Then r(w) = 0 and (z - l)w

= Iw = 0. Since (x - iy~xw = (y - \y~xH i- 0, KGw is the kernel of t,

and M = KGw. This completes the proof of the lemma and the theorem.

It should be noted that if a G Fp then M(a) is not periodic. This follows

from the fact that the restriction of M(a) to the subgroup J = (x~ay, z> is

not a periodic module (see [2]). It remains to show that there exist periodic

modules with period 2p when K = Fp.

Let/= T" + ß„_xT"~x + ■ ■ ■ +ßxT + ß0 be an irreducible polynomial

in K[T], Let L be the AG-module of dimension «p on which x and y are

represented by the matrices
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4c =

/

/    /

/    /

A„ =

/

U   I

U  I

respectively, where / is the n X n identity matrix, and

U =

0       1

0       1

-0o   -0i

0      1

-ßn-i

is the companion matrix for /. Now L is an indecomposable ÄG-module. If

K' is an extension of K which splits/, then

K' ®K L s M(ax) © • • • ©A/(aJ

where ax, . . . , a„ are the roots of / in K'. If therefore n > 1, then L is

periodic with period 2/> since, by the Noether-Deuring Theorem (see [3,

29.7]),

K' ® Q2p(L) « n^(Ä"' ® L) a K' ® L

implies that ß^L) s L.

The reader is invited to check that L is periodic with period 2/> when the

matrix U is replaced by

V

a

1    a

1    a

for a E K, a E Fp. Combining this with the fact that M(a) at M(ß) if and

only if a = ß, we get the following.

Theorem 3.8. Let p be an odd prime and ¡et K be a field of characteristic p.

If G is the nonabelian group of order p3 and exponent p, then there exist periodic

KG-modules which have period 2p. Moreover there exist an infinite number of

isomorphism classes of such modules and there exist such modules with arbi-

trarily large dimension.
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