PERIODIC MODULES WITH LARGE PERIODS

JON F. CARLSON¹

ABSTRACT. Let G be a nonabelian group of order p^3 and exponent p, where p is an odd prime. Let K be a field of characteristic p. In this paper it is proved that there exist periodic KG-modules whose periods are 2p. Some examples of such modules are constructed.

1. Introduction. Let G be a finite p-group, and let K be a field of characteristic p, where p is a prime integer. If M is a KG-module then there exists a projective KG-module F such that there is an epimorphism φ : $F \to M$. The kernel of φ can be written as $\Omega(M) \oplus E$ where E is projective and $\Omega(M)$ has no projective submodules. It is well known [5] that the isomorphism class of $\Omega(M)$ is independent of the choice of F and φ . Inductively we define $\Omega^n(M) = \Omega(\Omega^{n-1}(M))$ for all integers n > 1. A KG-module is said to be periodic if there exists an integer n > 0 such that $M \cong \Omega^n(M) \oplus P$ where P is a projective KG-module. If n is the smallest such integer then n is called the period of M.

Recently it has been proved that, when G is abelian, every periodic KG-module has period 1 or 2 (see [2] or [4]). It is well known that if G is a quaternion group, then every KG-module has period 1, 2 or 4. Until now there were no known examples of periodic modules with periods other than 1, 2, or 4 (see [1]). In this paper we show that if G is a group of order p^3 and exponent p for p an odd prime, then there exist periodic KG-modules with period 2p. Some examples along with their minimal projective resolutions are explicitly constructed.

2. Notation and preliminaries. Let p be an odd prime integer. Suppose that K is a field of characteristic p. Throughout the rest of this paper G will denote the group of order p^3 and exponent p. Then G is generated by two elements x and y. If $z = x^{-1}y^{-1}xy$, then we have the relations $x^p = y^p = z^p = 1$, xz = zx, and yz = zy. Let H be the subgroup generated by x and y. Let

$$\tilde{H} = \sum_{h \in H} h = (x - 1)^{p-1} (z - 1)^{p-1} \in KH.$$

Recall that a KH-module L is free if and only if $Dim_K \tilde{H}L = (1/p^2)Dim_K L$. If M is a KG-module, then M_H is its restriction to a KH-module.

Received by the editors September 28, 1978.

AMS (MOS) subject classifications (1970). Primary 20C05, 16A26, 20C20.

Key words and phrases. Periodic modules, modular group algebras.

¹This work was partially supported by NSF Grant No. MCS 78-01685.

The remainder of this section is devoted to establishing some combinatorial relations which will be needed in the next section. For $\alpha \in K$, let $l = l(\alpha) = (y - 1) - \alpha(x - 1) \in KG$.

LEMMA 2.1. $l^p = k(z - 1)^{p-1}$ where

$$k = \sum_{t=1}^{p-1} (-1)^t \frac{1}{p} \binom{p}{t} \alpha^t x^t y^{p-t}.$$

PROOF. Note that $l = (\alpha - 1) + (y - \alpha x)$. Therefore

$$l^{p} = (\alpha - 1)^{p} + (y - \alpha x^{p}) = \alpha^{p} - 1 + (y - \alpha x)^{p}.$$

In the expansion of $(y - \alpha x)^p$ the coefficient on $(-\alpha)^t$ is the sum of all possible products of x's and y's with x occurring t times and y occurring p - t times. Each such product can be written in the form $x^t y^{p-t} z^s$ for some $s = 0, 1, \ldots, p - 1$. Suppose that in each product the left-most letter (either x or y) is moved to the furthest right position. This operation amounts to multiplying the product by z^t . However the entire sum remains unchanged. Hence for $t = 1, \ldots, p - 1$, the coefficient on $(-\alpha)^t$ is

$$\sum_{j=0}^{p-1} \frac{1}{p} \binom{p}{t} x^{i} y^{p-t} z^{j} = \frac{1}{p} \binom{p}{t} x^{i} y^{p-t} (z-1)^{p-1}.$$

This proves the lemma.

LEMMA 2.2. There exists an element $v \in KG$ such that lk - kl = v(z - 1). Moreover if α is an element of K which is not in the prime field F_p , then v is a unit in KG.

PROOF. Now
$$lk - kl = (yk - ky) - \alpha(xk - kx)$$
. So

$$lk - kl = \sum_{t=1}^{p-1} (-1)^{t} \frac{1}{p} {p \choose t} \alpha^{t} x^{t} y^{p-t+1} (z^{-t} - 1)$$
$$- \sum_{t=1}^{p-1} (-1)^{t} \frac{1}{p} {p \choose t} \alpha^{t+1} x^{t+1} y^{p-t} (1 - z^{t}).$$

Note that $z^{-t} - 1 = z^{p-t} - 1 = (z-1)(z^{p-t-1} + \cdots + z + 1)$. Hence $lk - kl = \nu(z-1)$ where

$$v = \alpha x z^{-1} - \alpha^{p} y z^{-1}$$

$$- \sum_{t=1}^{p-2} (-1)^{t} \frac{1}{p} \left[\binom{p}{t+1} (z^{p-t-2} + \dots + 1) - \binom{p}{t} (z^{t-1} + \dots + 1) \right] \alpha^{t+1} x^{t+1} y^{p-t}.$$

Let $\epsilon: KG \to K$ be the augmentation homomorphism given by $\epsilon(g) = 1$ for all $g \in G$. Then

$$\epsilon(\nu) = \alpha - \alpha^p - \sum_{t=1}^{p-2} (-1)^t \left[\frac{1}{p} \binom{p}{t+1} (-t-1) - \frac{1}{p} \binom{p}{t} (t-p) \right] \alpha^{t+1}$$
$$= \alpha - \alpha^p.$$

The lemma follows from the fact that ν is a unit if and only if $\epsilon(\nu) \neq 0$.

Now if $r = 1, \ldots, p - 1$, then

$$l'k - kl' = \sum_{j=0}^{r-1} l^{j} (lk - kl) l^{r-1-j}$$
$$= \sum_{j=0}^{r-1} l^{j} \nu l^{r-1-j} (z - 1).$$

Therefore

$$(l^{r}k - kl^{r})(z - 1)^{p-2} = rl^{r-1}\nu(z - 1)^{p-1}.$$
 (2.3)

3. The main result. Let K be a field with odd characteristic p. Let G, $l = l(\alpha)$, k, ν be as in the previous section. Let W be the left ideal in KG given as W = KGl + KG(z - 1). We define $M = M(\alpha) = KG/W$. Then M is a cyclic KG-module generated by m = 1 + W where (z - 1)m = 0 and $(y - 1)m = \alpha(x - 1)m$. The dimension of M is p, and the restriction of M to a $K\langle x \rangle$ -module is isomorphic to $K\langle x \rangle$.

THEOREM 3.1. If $\alpha \notin F_p$ (the prime field), then $M(\alpha)$ is a periodic KG-module with period 2p.

The proof consists of constructing a minimal free resolution for M. Let $F = KGa \oplus KGb$ be a free module with generators a and b. For each $i = 1, \ldots, p-1$, let

$$m(i, 1) = l^{i}a - (z - 1)b,$$

 $m(i, 2) = k(z - 1)^{p-2}a - l^{p-i}b.$

Define M_i to be the submodule of F generated by m(i, 1) and m(i, 2).

LEMMA 3.2. Dim $M_i > p^3 + p$.

PROOF. Now $\tilde{H}m(i, 1) = (y - 1)^i \tilde{H}a$, and $\tilde{H}m(i, 2) = -(y - 1)^{p-i} \tilde{H}b$. Therefore the KH-module

$$E = \sum_{i=0}^{p-i-1} KH(y-1)^{i}m(i,1) \oplus \sum_{j=0}^{i-1} KH(y-1)^{j}m(i,2)$$

is a free KH-submodule of $(M_i)_H$ whose KH-socle is the subspace with a basis consisting of the elements $(y-1)^t \tilde{H} a$, $t=i,\ldots,p-1$, and $(y-1)^s \tilde{H} b$, $s=p-i,\ldots,p-1$. Also Dim $E=p^3$. Let

$$m(i,3) = k(z-1)^{p-2}m(i,1) - l^{i}m(i,2)$$

$$= (kl^{i} - l^{i}k)(z-1)^{p-2}a$$

$$= -il^{i-1}\nu(z-1)^{p-1}a.$$

The last equality follows from (2.3). By Lemma 2.2,

$$(x-1)^{p-1}v^{-1}m(i,3) = -i(y-1)^{i-1}\tilde{H}a \notin E.$$

Let

$$L = KH \nu^{-1}m(i, 3) = K\langle x \rangle \nu^{-1}m(i, 3).$$

Then $L \cap E = 0$ and Dim L = p. Consequently $L \oplus E$ is a subspace of M_i of dimension $p^3 + p$.

LEMMA 3.3. $M_1 \simeq \Omega^2(M)$ and Dim $M_1 = p^3 + p$.

PROOF. From the definition we know that $W \simeq \Omega(M)$. We have an exact sequence

$$0 \to \Omega^2(M) \to F \xrightarrow{\varphi} W \to 0$$

where φ is defined by $\varphi(a) = z - 1$ and $\varphi(b) = l$. Then

$$\varphi(m(1, 1)) = l(z - 1) - (z - 1)l = 0.$$

Also $\varphi(m(1, 2)) = k(z - 1)^{p-1} - l^p = 0$, by Lemma 2.1. Hence M_1 is in the kernel of φ . Since Dim $W = p^3 - p$, the dimension of the kernel of φ is $p^3 + p$. By Lemma 3.2, M_1 is the kernel of φ .

LEMMA 3.4. For each $i = 1, \ldots, p-2$, $\Omega^2(M_i) \simeq M_{i+1}$. Moreover Dim $M_i = p^3 + p$ for all $i = 1, \ldots, p-1$.

PROOF. Assume, by induction, that Dim $M_i = p^3 + p$. Note that

$$l^{p-i}m(i, 1) - (z-1)m(i, 2) = 0. (3.5)$$

We also have that

$$lk(z-1)^{p-2}m(i, 1) - l^{i+1}m(i, 2) = -l(l^{i}k - kl^{i})(z-1)^{p-2}a$$
$$= -i\nu(z-1)^{p-1}m(i, 1).$$

Therefore

$$[lk + i\nu(z-1)](z-1)^{p-2}m(i,1) - l^{i+1}m(i,2) = 0.$$
 (3.6)

Let $F' = KGc \oplus KGd$ be the free KG-module with generators c and d. We can form the exact sequence

$$0 \to \Omega(M_i) \to F' \overset{\psi}{\to} M_i \to 0,$$

where $\psi(c) = m(i, 1)$ and $\psi(d) = m(i, 2)$. By (3.5) and (3.6), the kernel of ψ contains the elements

$$u_1 = l^{p-i}c - (z-1)d$$

and

$$u_2 = [lk + i\nu(z-1)](z-1)^{p-2}c - l^{i+1}d.$$

Now $\tilde{H}u_1 = (y-1)^{p-i}\tilde{H}c$, $\tilde{H}u_2 = (y-1)^{i+1}\tilde{H}d$. Let

$$u_3 = k(z-1)^{p-1}c - l^i(z-1)d = l^iu_1.$$

Clearly $(z-1)^{p-1}u_3=0$ and

$$(x-1)^{p-1}(z-1)^{p-2}u_3 = -(y-1)^i \tilde{H} d.$$

By an argument similar to that in Lemma 3.2, we get that the dimension of the module L, generated by u_1 and u_2 , is at least $p^3 - p$. Since the dimension of the kernel of ψ is $p^3 - p$, $L \cong \Omega(M_i)$.

We can form the exact sequence

$$0 \to \Omega^2(M_1) \to F \xrightarrow{\theta} L \to 0$$

where $\theta(a) = u_1$ and $\theta(b) = u_2$. It is easy to see that

$$\theta(m(i+1,1)) = l^{i+1}u_1 - (z-1)u_2 = 0.$$

Also

$$\theta(m(i+1,2)) = k(z-1)^{p-2}u_1 - l^{p-i-1}u_2$$

= $\left[kl^{p-i} - l^{p-i}k - i\nu l^{p-i-1}(z-1)\right](z-1)^{p-2}c = 0,$

by (2.3). Consequently M_{i+1} is in the kernel of θ . By Lemma 3.2, M_{i+1} is the kernel of θ .

To conclude the proof of Theorem 3.1 we need only the following.

LEMMA 3.7.
$$\Omega^2(M_{p-1}) \cong M$$
.

PROOF. We have an exact sequence

$$0 \to \Omega(M_{p-1}) \to F' \xrightarrow{\sigma} M_{p-1} \to 0$$

where $F' = KGc \oplus KGd$, $\sigma(c) = m(p-1, 1)$ and $\sigma(d) = m(p-1, 2)$. Let u = lc - (z-1)d. Then $\sigma(u) = 0$. Now $\tilde{H}u = (y-1)\tilde{H}c$ and

$$(x-1)^{p-1}(z-1)^{p-2}l^{p-1}u = -(y-1)^{p-1}\tilde{H}d \neq 0.$$

By an argument similar to that of Lemma 3.2, we get that Dim $KGu > p^3 - p$. Therefore the kernel of σ is $KGu \cong \Omega(M_{p-1})$.

Define τ : $KG \to KGu$ by $\tau(1) = u$. The kernel of τ has dimension p and is isomorphic to $\Omega^2(M_{p-1})$. Let $\omega = (z-1)^{p-1}l^{p-1}$. Then $\tau(\omega) = 0$ and $(z-1)\omega = l\omega = 0$. Since $(x-1)^{p-1}\omega = (y-1)^{p-1}\tilde{H} \neq 0$, $KG\omega$ is the kernel of τ , and $M = KG\omega$. This completes the proof of the lemma and the theorem.

It should be noted that if $\alpha \in F_p$ then $M(\alpha)$ is not periodic. This follows from the fact that the restriction of $M(\alpha)$ to the subgroup $J = \langle x^{-\alpha}y, z \rangle$ is not a periodic module (see [2]). It remains to show that there exist periodic modules with period 2p when $K = F_p$.

Let $f = T^n + \beta_{n-1}T^{n-1} + \cdots + \beta_1T + \beta_0$ be an irreducible polynomial in K[T]. Let L be the KG-module of dimension np on which x and y are represented by the matrices

$$A_{x} = \begin{bmatrix} I & & & & \\ I & I & & & \\ & \cdot & \cdot & \cdot & \\ & & & I & I \end{bmatrix}, \quad A_{y} = \begin{bmatrix} I & & & & \\ U & I & & & \\ & \cdot & \cdot & \cdot & \\ & & & U & I \end{bmatrix},$$

respectively, where I is the $n \times n$ identity matrix, and

is the companion matrix for f. Now L is an indecomposable KG-module. If K' is an extension of K which splits f, then

$$K' \otimes_K L \cong M(\alpha_1) \oplus \cdots \oplus M(\alpha_n)$$

where $\alpha_1, \ldots, \alpha_n$ are the roots of f in K'. If therefore n > 1, then L is periodic with period 2p since, by the Noether-Deuring Theorem (see [3, 29.7]),

$$K' \otimes \Omega^{2p}(L) \simeq \Omega^{2p}(K' \otimes L) \simeq K' \otimes L$$

implies that $\Omega^{2p}(L) \cong L$.

The reader is invited to check that L is periodic with period 2p when the matrix U is replaced by

$$U' = \left[\begin{array}{cccc} \alpha & & & \\ 1 & \alpha & & & \\ & \ddots & \ddots & & \\ & & & 1 & \alpha \end{array} \right]$$

for $\alpha \in K$, $\alpha \notin F_p$. Combining this with the fact that $M(\alpha) \cong M(\beta)$ if and only if $\alpha = \beta$, we get the following.

THEOREM 3.8. Let p be an odd prime and let K be a field of characteristic p. If G is the nonabelian group of order p^3 and exponent p, then there exist periodic KG-modules which have period 2p. Moreover there exist an infinite number of isomorphism classes of such modules and there exist such modules with arbitrarily large dimension.

REFERENCES

- 1. J. L. Alperin, Perodicity in groups, Illinois J. Math. 21 (1977), 776-783.
- 2. J. F. Carlson, The dimensions of periodic modules over modular group algebras, Illinois J. Math. (to appear).
- 3. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1966.
- 4. D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations (to appear).
- 5. A. Heller, Indecomposable representations and the loop-space operation, Proc. Amer. Math. Soc. 12 (1961), 460-463.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602