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LIE ALGEBRA MULTIPLICITIES1

S. BERMAN AND R. V. MOODY

Abstract. Exact formulas for root space multiplicities in Cartan matrix Lie

algebras and their universal enveloping algebras are computed. We go on to

determine the number of free generators of each degree of the radicals

defining these algebras.

1. Introduction. The remarkable product formula

2   (-l)'(w)e(s(w))=   n   (I-Ka))™» (1)

relating the Weyl group and the roots of an arbitrary Euclidean Lie algebra

was discovered and proved by I. G. Macdonald [7] (for notation see below).

Subsequently V. G. Kac [4] gave a new proof of this which was shorter and

explicitly involved the Lie algebra, and at the same time established that the

formula was valid for the entire class of Lie algebras deriving from sym-

metrizable Cartan matrices. This has been written up in a very lucid way by

H. Garland and J. Lepowsky [3], where the formula is obtained by the

Euler-Poincaré principle applied to Lie algebra homology.

In the Euclidean case, where the multiplicities ma were independently

known, Macdonald used the formula as a powerful tool in producing identi-

ties for certain number theoretical functions, notably Dedekind's n-function.

This work has been greatly extended by J. Lepowsky where (1) is used to

prove combinatorial expansions for every positive power of tj [6]. In other

cases it serves as a method, indeed the only one known, for computing the

multiplicities. Up to now one has used the formula as it stands, computing the

multiplicities inductively. Here we show how to invert the formula. We obtain

an explicit formula (Theorem 2) for the multiplicities which can be seen as an

analogue of Witt's dimension formula for free Lie algebras.

The Lie algebras £ under consideration (see [5] or [9]) are factors of a

well-understood graded Lie algebra £ (see [1]) by a homogeneous ideal R, £

is the direct sum £~ © % © £+ where £~ and £+ are isomorphic free Lie

algebras and % is abelian and acts diagonally. R splits up accordingly:

R = R + © R° © R ~, and R + and R ~ are themselves ideals of £+ and £~.

These are free Lie algebras and possess a free generating system consisting of

homogeneous elements [2]. In Theorem 3 we obtain a formula for the number
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of free generators of each degree in such a system.

2. Notation. The notation here is consistent with that of [8], in which one

can find all the relevant definitions. A is the root system of a symmetrizable

Cartan matrix (Ay) and A+ is the set of positive roots of A relative to some

base {a,, . . ., a,} of A. (ZA)+ is the set of nonnegative integral linear

combinations of ax, ... , a, and for ß = Iz^ E (ZA)+, the height ht ß of ß

is 2z,. W is the Weyl group and for each w G W, l(w) is the length of w as an

expression of minimum length in terms of the fundamental reflections

r,, ...,/•/ in ot„ ..., a,. For each w E W, s(w) is the sum of the positive

roots which are mapped into — A+ by »v_l. For a E (ZA)+ the multiplicity

ma of a is the dimension of the corresponding root space. It is taken to be 0 if

a is not a root. The e(a) axe formal exponentials, which means that we

construct the integral semigroup algebra of the semigroup ((ZA)+,+), in

which we treat (ZA)+ multiplicatively letting a be denoted by e(a). Thus the

e(a) (a G (ZA)+) are all Z-independent and e(a)e(ß) = e(a + ß). In for-

mulas such as (1) the sums and products are formal, being taken in order of

increasing height.

The universal enveloping algebras t/(£+) and C/(£+) inherit the grading of

£+ and £+ by (ZA)+. For a G (ZA)+, na and «„ denote the dimensions of the

spaces U(t+)a and i/(£+)a. Let ma = dim £a.

Let s0, sx,s2,... be the set of elements s(w), w E W, written in an order of

increasing height. Thus s0 = s(l) = 0 (empty sum) and sx, s2, . . ., s, are

a„ . . . ,a, in some order. For each s(w) let e(s(w)) = — (—1)'(M,). In this

notation (1) assumes the form

1 - f '{'M*,) =    II   (1 - e(a))m: (V)

Now introduce partitions of elements of (ZA)+ into sums of the s¡. For each

sequence (ri) = («,, n2, n3, . . .) of nonnegative integers n¡, all but a finite

number being zero, consider 2«,j, G (ZA)+ (note that s0 is not included in

this). For X E (ZA)+, S(X) is defined to be {(«)|2/i,j, = X}. We write S(«) for

S"!,«,, B(n) for B((n)) := (2«,.)!/II(n(!), and sgn(n) for sgn((«)) := We(s^.

For a, X G (ZA)+ we write A|a if a = rX for some positive integer r and

denote l/rby X/a. Finally, p denotes the Möbius function.

3. The formulas.

Theorem 1. For all a G (ZA)+,

»« -      2     sgn(«)B(n).
(n)eS(a)

Proof. Using the Poincaré-Birkhoff-Witt theorem followed by the

Macdonald-Kac identity (1') we have
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1

«e(V   "'        na6A(l - e(a)r-

1 00/00 \*

= i—v°° t/,w,t =22 «(*/)«(*/))

=     2 2     sgn(n)B(n)e(a).    Q
«e(Z4)+ (»)6S(«)

Theorem 2. For a// a E (ZA)+, a ^ 0,

««-2i*(x)-    2    (ne(i,)')-=7-^—•
\|o   VA/ a (n)eS(X) ll(n,-')

Proof. Let the left-hand side of (1) be denoted by 2. Applying —log to (10

-log2-   2   ma(-log(l - e(a)))

V v e(»)*     v     «(*«)
=     ¿t    ma 2a —— - 2u m~

ae(ZA)

Apply the operator

k-i     k a,k   "     k

E= 2 e(«,)-^-7-T
,_i o«(«,-)

to get

Set

E(Z)      v      ht(to)   t.   . m

C(X) - 2 ««ht a. (3)

so the right-hand side of (2) becomes 2x6(ZA)+C(X)e(X). Now

- £(2) = | e(si)ht(sl)e(si)
i-O

and

2"'=     2 2     sgn(«)fi(«)e(a)

(see Theorem 1). Thus

—9^= I e^htUXi,)-     2 2     sgn(n)*(»)e(a).     (4)
■* f-0 ae(ZA)+ (n)eS(a)

The coefficient of e(X) in (4) is

I e(5,)htfo)       2       sgn(n)¿(fl) (5)
i-l (n)eS(A-i,)
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[note.that ht(j0) = 0]. Evidently if (n) = («„ n2, . . . ) G S(X - s¡) then

(«„ «2, ...,«, + 1, ...) G S(X);

conversely if («,, «2, . .. ) G S(X) then for each i for which n¡ > 0,

(«„ «2,...,«, - 1,. .. ) G S(X - s,).

Thus each partition («) G S(X) makes a contribution of size

e(J(.)ht(J,.)sgn((«)('X(«)('>)

in (5) once for each i for which «, > 0, where

(«)(0 := («„ n2, ...,«,- 1, ... ).

Since

B((nf>) = ((2«,) - l)!«,./n(«,!),

estent»") = sgn(«),
and

2«,ht(í,) = ht(A),

there is a total contribution of ht(A)sgn(«)((2«,) - l)!/ïï(«,!). Thus

C(X) = ht(À)    2     sgn(«)((2«,) - l)!/n(«,!).
C)es(A)

The theorem follows by Möbius inversion of (3).   □

In spite of its apparent complexity the formula is quite effective, especially

at low heights, since the s¡ rise rapidly in height and relatively few are

involved in any particular case.

In the limiting case when all the off-diagonal entries of the Cartan matrix

are oo, the part of the Lie algebra spanned by the positive root spaces is the

free Lie algebra on / generators. Then there are no j,'s past i = / and for each

X = 2«,a, G (ZA)+, 5(A) reduces to the single partition («) = («„ «2,..., n,).

The multiplicity formula then collapses to the well-known Witt formula.

Recall that £+ = £+/R+ and R+ is a homogeneous ideal of £+. Let

ra = dim R*, a E (ZA)+. Since £+ is free, it is well known that R + is a free

Lie algebra. One also knows [2, Chapter II, §2, Problem 13, p. 184] that R +

has a set of homogeneous free generators. Let ga denote the number of these

generators of degree a. Finally let ua be the dimension of the space of

elements of degree a in the universal enveloping algebra U(R +) of R +. We

view U(R +) as a subalgebra of i/(£+).

Theorem 3. For all a E (ZA)+, a ¥= 0,

«,-- 2 sgn(«)¿(«)(i-"i+y;;+n
(n)eS(a) \ 2-(") /
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Proof. U(R +) is a free associative algebra freely generated by the genera-

tors of the free Lie algebra R +. It follows that

-j-~-7-T = 2 uae(a).
1 - 2gae(a)

On the other hand

2 "ae(a) =
n(l - e(a))r"

by the Poincaré-Birkhoff-Witt theorem.

Combining the two equalities we have

i      V      i  \     ro,        ( w.     n(l - e(a)f"
i-2^)-no-«(a))-n(l_<(a)r

= (l-[e(«,)+--- +e(a,)])

•     2 2     sgn(n) B(n) e(a),
ae(ZA)+ C)eS(«)

the last equality following from the formula

1
- 2 ñae(a) =

1 ~[e(o,) + • • • + e(a,)] n(l - e(a)f"

and Theorem 1. We conclude that for a E (ZA)+, a ¥= 0

i

- ga -      2     sgn(if)B(#i) - 2 2       sgn(n)B(n).
(n)eS(a) i = l (n)eS(a-cti)

Every (n) E S(a) with n¡ > 0 determines

(«') = (n„ ...,«,- 1, . . . ) E S(a - a,)

whose contribution to the sum over S(a - a,) is sgn(«)«,5(«)/2(n) (note

e(s¡) = 1 for / = 1, . . ., /). This is evidently valid even if n¡ = 0, and every

(m) E S(a — a,), i = 1, ...,/, is accounted for in this way. Thus

- ga =     2     sgn(n)B(n)
(n)eS(a)

1-2
,=, 2(*)

D
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