VALUES TAKEN MANY TIMES BY EULER'S PHI-FUNCTION

KENT WOOLDRIDGE

> ABSTRACT. Let b_{m} denote the number of integers n such that $\phi(n)=m$, where ϕ is Euler's function. Erdons has proved that there is a $\delta>0$ such that $b_{m}>m^{\delta}$ for infinitely many m. In this paper we show that we may take δ to be any number less than $3-2 \sqrt{2}$.

We begin with a lemma that is a simple case of Theorem 3.12 in [2].
Lemma 1. Let a and k be relatively prime positive integers of opposite parity. Then for any $\varepsilon>0$ we have

$$
\sum_{\substack{p<N \\ a p+k p r i m e}} 1<(8+\varepsilon) H(a, k) N(\log N)^{-2}
$$

for $N>N_{0}$, where

$$
H(a, k)=\prod_{p>2}\left(1-(p-1)^{-2}\right) \prod_{\substack{p \mid a k \\ p>2}}(p-1)(p-2)^{-1}
$$

and where N_{0} depends only on ε.
Next we need a well-known lemma, whose proof may be found in [3].
Lemma 2. Let d_{1}, d_{2}, \ldots be a sequence of complex numbers such that $\sum_{n=1}^{\infty} d_{n} n^{-1}$ is absolutely convergent. Then if

$$
\sum_{m=1}^{\infty} c_{m} m^{-s}=\sum_{m=1}^{\infty} m^{-s} \sum_{n=1}^{\infty} d_{n} n^{-s} \quad(\operatorname{Re} s>1)
$$

we have

$$
\lim _{x \rightarrow \infty} x^{-1} \sum_{m<x} c_{m}=\sum_{n=1}^{\infty} d_{n} n^{-1} .
$$

Let k be a fixed positive integer. Let t be a positive number and let $r=1 /(1+t)$. Let $G(N, k, t)$ denote the number of primes p greater than k and not exceeding N for which $p-k$ has a prime divisor q such that $q>N^{r}$.

Lemma 3. For any $\varepsilon>0$ and any positive $t<(\sqrt{2}-1) / 2$ we have

$$
\begin{equation*}
G(N, k, t)<4(1+\varepsilon) t(1+t) N(\log N)^{-1} \tag{1}
\end{equation*}
$$

for sufficiently large N.

[^0]Proof. Fix $\varepsilon>0$. Let p be a prime such that $k<p \leqslant N$. Suppose $q \geqslant N^{r}$ is a prime dividing $p-k$. Then $p-k=a q$ with $(a, k)=1$ and $a \leqslant N^{1-r}$. Clearly a and k are of opposite parity. Thus

$$
\begin{equation*}
G(N, k, t) \leqslant \sum_{\substack{k<p<N \\(p-k) / a \text { prime }}} \sum_{a<N^{1-r}}^{\prime} 1=\sum_{a<N^{1-r}}^{\prime} \sum_{\substack{q<(N-k) / a \\ a q+k \text { prime }}} 1 \tag{2}
\end{equation*}
$$

where the prime indicates that the sum is over integers a such that a and k are of opposite parity and $(a, k)=1$.

We shall show that, for $a \leqslant N^{1-r}$, we have

$$
\begin{equation*}
(N-k)\left(\log \frac{N-k}{a}\right)^{-2} \leqslant N(r \log N)^{-2} \tag{3}
\end{equation*}
$$

for $N \geqslant M$, where M is independent of a. Since the left-hand side of (3) increases with a, the assertion (3) is true if it holds with a replaced by N^{1-r}. The resulting inequality is easily shown to be equivalent to

$$
\begin{equation*}
-r^{2} k(\log N)^{2} \leqslant 2 r N \log N \log \left(1-k N^{-1}\right)+N\left(\log \left(1-k N^{-1}\right)\right)^{2} \tag{4}
\end{equation*}
$$

Note that $x \log \left(1-k x^{-1}\right) \rightarrow-k$ as $x \rightarrow \infty$. This implies that the right-hand side of (4) is $\mathrm{O}(\log N)$. The assertion (3) follows.

If we use Lemma 1 together with (2) and (3) we have

$$
\begin{equation*}
G(N, k, t) \leqslant 8(1+\varepsilon) N(r \log N)^{-2} \sum_{a<N^{1-r}}^{\prime} H(a, k) a^{-1} . \tag{5}
\end{equation*}
$$

Define the multiplicative function f by $f(2)=1, f(p)=1+(p-2)^{-1}$ for $p>2$, and

$$
f(n)=\prod_{p \mid n} f(p)=\prod_{\substack{p \mid n \\ p>2}}\left(1+\frac{1}{p-2}\right)
$$

Then we have

$$
H(a, k)=D f(k) f(a)
$$

where

$$
D=\prod_{p>2}\left(1+\frac{1}{p(p-2)}\right)^{-1}
$$

Thus

$$
\begin{equation*}
\sum_{a<x}^{\prime} H(a, k) a^{-1}=D f(k) \sum_{a<x}^{\prime} f(a) a^{-1} \tag{6}
\end{equation*}
$$

We will use Lemma 2 and a partial summation to estimate the last sum.
First assume that k is even. Then, for $\operatorname{Re} s \geqslant 1$,

$$
\sum_{n=1}^{\infty} f(n) \frac{1}{n s}=\prod_{p \nmid k}\left\{1+f(p)\left(\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right)\right\}=\zeta(s) g(s)
$$

where

$$
g(s)=\prod_{p \mid k}\left(1-\frac{1}{p^{s}}\right) \prod_{p \nmid k}\left(1+\frac{1}{p^{s}(p-2)}\right) .
$$

The product converges absolutely for $\operatorname{Re} s>0$.
Now assume that k is odd. Then, for $\operatorname{Re} s \geqslant 1$,

$$
\begin{aligned}
\sum_{n=1}^{\infty} f(n) \frac{1}{n^{s}} & =\left(\frac{1}{2^{s}}+\frac{1}{2^{2 s}}+\cdots\right) \prod_{\substack{p \nmid k \\
p>2}}\left\{1+f(p)\left(\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right)\right\} \\
& =\zeta(s) g(s)
\end{aligned}
$$

where

$$
g(s)=\frac{1}{2^{s}} \prod_{p \mid k}\left(1-\frac{1}{p^{s}}\right) \prod_{\substack{p \nmid k \\ p>2}}\left(1+\frac{1}{p^{s}(p-2)}\right)
$$

In either case, we can conclude from Lemma 2 that

$$
\lim _{x \rightarrow \infty} x^{-1} \sum_{n<x}^{\prime} f(n)=g(1)=B(k) \frac{\phi(k)}{k} \prod_{\substack{p \nmid k \\ p>2}}\left(1+\frac{1}{p(p-2)}\right),
$$

where $B(k)$ equals 1 or $\frac{1}{2}$ according as k is even or odd.
Let

$$
C(x)=\sum_{n<x}^{\prime} f(n)=g(1) x+o(x)
$$

We have

$$
\begin{align*}
\sum_{n<x}^{\prime} \frac{f(n)}{n} & =\frac{C(x)}{x}+\int_{1}^{x} \frac{C(u)}{u^{2}} d u \\
& =O(1)+g(1) \log x+o(\log x) \tag{7}
\end{align*}
$$

Combining (6) and (7) we see that

$$
\begin{align*}
\sum_{a<x}^{\prime} H(a, k) a^{-1} & \sim D f(k) B(k) \frac{\phi(k)}{k} \prod_{\substack{p \nmid k \\
p>2}}\left(1+\frac{1}{p(p-2)}\right) \log x \\
& =\frac{1}{2} \log x . \tag{8}
\end{align*}
$$

Combining (5) and (8) we see that, for large N,

$$
G(N, k, t) \leqslant 4(1+\varepsilon) t(1+t) N(\log N)^{-1}
$$

since $(1-r) / r^{2}=t(1+t)$.
Note that the Prime-Number Theorem implies that Lemma 3 is trivial if $t \geqslant(\sqrt{2}-1) / 2$.

Let $P(N, k, t)$ denote the number of primes in the interval $(k, N]$ such that $p-k$ is composed of primes less than N^{r}, where $r=(1+t)^{-1}$. Then

$$
\begin{equation*}
\pi(N)=\pi(k)+G(N, k, t)+P(N, k, t) \tag{9}
\end{equation*}
$$

Lemma 4. For any $t<(\sqrt{2}-1) / 2$ and any

$$
\varepsilon<\varepsilon(t)=(1-4 t(1+t)) /\left(2+5 t+4 t^{2}\right)
$$

we have

$$
P\left((\log N)^{t+1}, k, t\right) \geqslant \varepsilon(\log N)^{t+1}(\log \log N)^{-1}
$$

provided N is sufficiently large.
Proof. Choose $\mathrm{t}<(\sqrt{2}-1) / 2$ and $\varepsilon<\varepsilon(t)$. By the Prime-Number Theorem we have

$$
\begin{equation*}
\pi\left((\log N)^{t+1}\right)-\pi(k)>\frac{1-\varepsilon}{t+1}(\log N)^{t+1}(\log \log N)^{-1} \tag{10}
\end{equation*}
$$

for large N. By Lemma 3 we have

$$
\begin{equation*}
G\left((\log N)^{t+1}, k, t\right)<4(1+\varepsilon) t(\log N)^{t+1}(\log \log N)^{-1} \tag{11}
\end{equation*}
$$

for large N.
Combining (9), (10), and (11) we see that

$$
\begin{align*}
& P\left((\log N)^{t+1}, k, t\right) \\
& \quad \geqslant\left\{(1-\varepsilon)(t+1)^{-1}-4(1+\varepsilon) t\right\}(\log N)^{t+1}(\log \log N)^{-1} \tag{12}
\end{align*}
$$

for large N. Since $t<(\sqrt{2}-1) / 2$, we have $(t+1)^{-1}-4 t>0$. It is easy to check that if $\varepsilon<\varepsilon(t)$, then

$$
\begin{equation*}
(1-\varepsilon)(t+1)^{-1}-4(1+\varepsilon) t>\varepsilon \tag{13}
\end{equation*}
$$

If we combine (12) and (13) we have the result.
Let $Q(N, k, t)$ denote the number of square-free integers not exceeding N that are composed of the primes counted by $P\left((\log N)^{t+1}, k, t\right)$.

Lemma 5. For any $t<(\sqrt{2}-1) / 2$ and any ε we have $Q(N, k, t)>$ $N^{(1-e)(1-r)}$ for large N, where $r=(t+1)^{-1}$.

Proof. Let $t<(\sqrt{2}-1) / 2$ and assume without loss of generality that $\varepsilon<\varepsilon(t)<1$. Let $u=\varepsilon / 2$, and let

$$
c=c(t, N)=\log N((t+1) \log \log N)^{-1}
$$

Let $d=[c]$. Suppose q is square-free and has d prime factors that are counted by $P\left((\log N)^{t+1}, k, t\right)$. Then $q<(\log N)^{c(t+1)}=N$. The number of such q is the binomial coefficient $B=\binom{P}{d}$, where $P=P\left((\log N)^{t+1}, k, t\right)$. By Lemma 4 we have

$$
P>\varepsilon(\log N)^{t+1}(\log \log N)^{-1}
$$

Since

$$
\binom{m}{n} \geqslant\left(\frac{m}{n}\right)^{n} \quad \text { for } m \geqslant n \geqslant 1
$$

we have

$$
\begin{equation*}
B \geqslant\left(\frac{P}{d}\right)^{d} \geqslant\left(\varepsilon(t+1)(\log N)^{t}\right)^{d} \tag{14}
\end{equation*}
$$

For large N we have

$$
\begin{equation*}
\frac{(1-u) \log N}{(t+1) \log \log N} \leqslant d \leqslant \frac{(1+u) \log N}{(t+1) \log \log N} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \log N \geqslant \frac{(1+u)(-\log \varepsilon)}{t u} \tag{16}
\end{equation*}
$$

Now, using (15) and (16), we have

$$
\begin{align*}
\varepsilon^{d} & >\exp \left((1+u) \log \varepsilon \log N((t+1) \log \log N)^{-1}\right) \\
& \geqslant \exp \left(-t u(1+t)^{-1} \log N\right)=N^{-u(1-r)} \tag{17}
\end{align*}
$$

Also,

$$
\begin{align*}
(\log N)^{t d} & \geqslant \exp \left(t(1-u) \log N((t+1) \log \log N)^{-1} \log \log N\right) \\
& =\exp \left(t(t+1)^{-1}(1-u) \log N\right)=N^{(1-u)(1-r)} \tag{18}
\end{align*}
$$

Using (14), (17), and (18), we see that

$$
Q(N, k, t)>B>N^{(1-u)(1-r)-u(1-r)}=N^{(1-e)(1-r)}
$$

Lemma 6. Let $M(N)$ denote the number of integers not exceeding N that are composed of primes less than $\log N$. Then for any $\varepsilon>0$ we have $M(N)<N^{e}$ for sufficiently large N.

Proof. This is easily proved. The proof may be found in Erdős [1].
Let f be a multiplicative arithmetic function with $f(p)=p-k$ for prime p greater than k. We need not consider the values of f at higher prime powers or at primes not exceeding k.
Theorem. Let f be as above. If $\delta<3-2 \sqrt{2}$, then there are infinitely many m such that, for more than m^{δ} square-free integers q, we have $m=f(q)$.

Proof. If $t<(\sqrt{2}-1) / 2$ and $\varepsilon<\varepsilon(t)$ there are, by Lemma 10, at least $\varepsilon(\log N)^{t+1}(\log N)^{-1}$ primes in the interval $\left(k,(\log N)^{t+1}\right]$ such that $p-k$ is composed of primes less than $\log N$. Let $u=\varepsilon / 2$ and let $r=(t+1)^{-1}$. By Lemma 5 the are at least $N^{(1-u)(1-r)}$ square-free integers $q<N$ that are composed of these primes. Let W be the number of values of $f(q)$ for these square-free integers. Since

$$
f(q)=\prod_{p \mid q}(p-k)
$$

we see that $f(q)$ is divisible only by primes less than $\log N$ for each of these q. By Lemma 6 we have $W \leqslant M(N) \leqslant N^{u}$ for large N. By the pigeon-hole principle there is an $m \leqslant N$ such that, for at least

$$
N^{(1-u)(1-r)-u} \geqslant N^{(1-r)-\varepsilon} \geqslant m^{(1-r)-\varepsilon}
$$

of these q, we have $m=f(q)$. If $\delta<3-2 \sqrt{2}$ we can choose $t<(\sqrt{2}-$ 1)/2 and $\varepsilon<\varepsilon(t)$ so that $(1-r)-\varepsilon=t(1+t)^{-1}-\varepsilon>\delta$, since

$$
\frac{(\sqrt{2}-1) / 2}{1+(\sqrt{2}-1) / 2}=3-2 \sqrt{2} .
$$

Thus for $\delta<3-2 \sqrt{2}$ and N sufficiently large, we have, for some $m<N$, more than m^{δ} square-free integers q such that $m=f(q)$. The theorem follows. \square

References

1. P. Erdös, On the normal number of prime factors of $p-1$ and some related problems concerning Euler's ϕ-function, Quart. J. Math. Oxford Ser. 6 (1935), 205-213.
2. H. Halberstam and H. E. Richert, Sieve methods, Academic Press, New York, 1974.
3. D. G. Kendall and R. A. Rankin, On the number of Abelian groups of a given order, Quart. J. Math. Oxford Ser. 18 (1947), 197-208.

Department of Mathematics, California State College, Stanislaus, Turlock, CaliFORNIA 95380

[^0]: Received by the editors August 11, 1978.
 AMS (MOS) subject classifications (1970). Primary 10A20.

