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VALUES TAKEN MANY TIMES BY EULER’S PHI-FUNCTION
KENT WOOLDRIDGE

ABSTRACT. Let b, denote the number of integers n such that ¢(n) = m,
where ¢ is Euler’s function. Erdos has proved that there is a 8 > 0 such that
b,, > m? for infinitely many m. In this paper we show that we may take & to
be any number less than 3 — 2V2 .

We begin with a lemma that is a simple case of Theorem 3.12 in [2].

LEMMA 1. Let a and k be relatively prime positive integers of opposite parity.
Then for any € > 0 we have

> 1< (8+¢€)H(a, k)N(log N)?
N
ap-flfprime

for N > N,, where
Hak)=T(-(-D)I(-1)p-2"
p>2 plak

p>2
and where N, depends only on e.
Next we need a well-known lemma, whose proof may be found in [3].

LEMMA 2. Let dy, d,, ... be a sequence of complex numbers such that
3*_,d,n" " is absolutely convergent. Then if

o0 o0 -2}
Sem =3 m*Ydn*  (Res>1),
m=1 m=1] n=1

we have

lim x™ 'Y ¢,= > dn".

X—>00 m<x n=1

Let k be a fixed positive integer. Let ¢ be a positive number and let
r=1/( + 1). Let G(N, k, t) denote the number of primes p greater than k
and not exceeding N for which p — k has a prime divisor ¢ such that ¢ > N’.

LEMMA 3. For any ¢ > 0 and any positive t < (V2 — 1)/2 we have

G(N, k, 1) < 4(1 + €)t(1 + f)N(log N) ™! (1)
Jor sufficiently large N.
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ProoOF. Fix ¢ > 0. Let p be a prime such that kK <p < N. Suppose ¢ > N”
is a prime dividing p — k. Then p — k = aq with (g, k) =l anda < N'™".
Clearly a and k are of opposite parity. Thus

GV k< 3 1= S 10

k<p<N  g<nN'"r a<N!'=r q<(N—k)/a
(p—k)/a prime aq+ k prime

where the prime indicates that the sum is over integers a such that a and k are
of opposite parity and (a, k) = 1.
We shall show that, fora < N'~’, we have

N-k

-2
(N - k)(log ) < N(rlogN)™2 3)

for N > M, where M is independent of a. Since the left-hand side of (3)
increases with a, the assertion (3) is true if it holds with a replaced by N'~".
The resulting inequality is easily shown to be equivalent to

— r*k(log N )* < 2rN log N log(1 — kN =) + N(log(1 — kN ~Y))%. (4)
Note that x log(1 — kx~') - — k as x — co. This implies that the right-hand

side of (4) is O(log N). The assertion (3) follows.
If we use Lemma 1 together with (2) and (3) we have

G(N,k, 1) < 8(1 + e)N(rlogN)™2 3" H(a, k)a". (5)

a<N!'-r

Define the multiplicative function f by f2) =1, (p) =1 + (p — 2)~! for
p > 2,and

1
sy = IL1(p) = I,Ii(n + p—_—z-)

Then we have

H(a, k) = Df(k)f(a),

where
1 -1
p-I(1+5)
Thus
2 H(a, k)a™" = Df(k) 3 fla)a™". (©)

We will use Lemma 2 and a partial summation to estimate the last sum.
First assume that k is even. Then, for Re s > 1,

S =T {1+ 1)+ 5+ )] - ¥

n=1
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where

s6) =113 ) L1+ 55— )

The product converges absolutely for Re s > 0.
Now assume that k is odd. Then, for Re s > 1,

’gl’f(n);l;=(%+%+...)n {1+f(p)(;l’-+.;;+...)}

2 pik2
= §(s)g(s),
where
1
=31 7) 11+ 575 =5)
P>

In either case, we can conclude from Lemma 2 that

lim x 'zf(n) g(l)—B(k)"’(k) 1 (1 b )

pik (P 2)
p>2
where B(k) equals 1 or 3 according as k is even or odd.
Let
C(x) = 3 'f(n) = g(1)x + o(x)
We have

) _ €0, (rC)
1

n<x nh X u?
O(1) + g(1)log x + o(log x). @)
Combining (6) and (7) we see that

3/ Ha, Bt ~ Df(k)B(k) X H( Tp—l—z))logx

p>2

1
=3 log x. 8)

Combining (5) and (8) we see that, for large N,
G(N, k, t) < 4(1 + €)t(1 + t)N(log N) ™!,

since(1 —r)/r*=t(1+1). O

Note that the Prime-Number Theorem implies that Lemma 3 is trivial if
t> (V2 -1)/2

Let P(N, k, t) denote the number of primes in the interval (k, N] such that
p — k is composed of primes less than N’, where 7 = (1 + ¢)~'. Then

7(N) = a(k) + G(N, k,t) + P(N, k, t). 9)
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LEMMA 4. For any t < (V2 — 1)/2 and any
e<e(®)=(1-4(1+1)/(2+5t+4?
we have
P((log N)'*', k, t) > e(log N)"*'(log log N) ',
provided N is sufficiently large.

PROOF. Choose t < (V2 — 1)/2 and ¢ < &(f). By the Prime-Number Theo-
rem we have
n((log N)™*") — m(k) > L=¢

o (log N)™*'(log log N) ! (10)

for large N. By Lemma 3 we have
G((log N)'™*', k, 1) < 4(1 + e)t(log N)'*'(loglog N)™'  (11)
for large N.
Combining (9), (10), and (11) we see that
P((log N)'*\ k, 1)
>{(1=e)t+1)7" = 4(1 + &)t}(log N)*'(loglog N)™' (12)

for large N. Since t < (V2 — 1)/2, we have (t + 1)~! — 47 > 0. It is easy to
check that if ¢ < &(¢), then

A=)+ 1) =40 + &)t >e. (13)

If we combine (12) and (13) we have the result. [
Let Q(N, k, t) denote the number of square-free integers not exceeding N
that are composed of the primes counted by P((log N)'*!, k, 1).

LEMMA 5. For any t < (V2 — 1)/2 and any ¢ we have Q(N,k,t) >
N=X1=0 for large N, where r = (t + 1)~.

PROOF. Let ¢ < (V2 — 1)/2 and assume without loss of generality that
e<e(t) < 1. Letu = ¢/2, and let
c=c(t,N)=1log N((t + 1)loglog N)~".

Let d = [c]. Suppose q is square-free and has d prime factors that are counted
by P((log NY*', k, {). Then ¢ < (log N)***" = N. The number of such q is
the binomial coefficient B = (§), where P = P((log N)'*!, k, #). By Lemma 4
we have

P >e(log N) *'(loglog N)~ .
Since

(™) > (%)" form »n > 1,
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we have

5>

N

d
) > (e(r + 1)(log N ))". (14)
For large N we have

(1 — u)log N <d< (1 + u)log N

(¢ + Dlog log N (¢t + log log N (15)
and
loglog N > 1+ u)t(u—log J) . (16)
Now, using (15) and (16), we have
e? > exp((1 + u)log e log N((t + 1)log log N) ")

> exp(—tu(l + 1) 'log N) = N 1=, (17)

Also,

(log N)* > exp(t(1 — u)log N((t + 1)log log N ) 'log log N )

=exp(t(t + 1)7'(1 — u)log N) = N-X1-n), (18)

Using (14), (17), and (18), we see that
Q(N, k, l) >B > N(l—u)(l—r)—-u(l—r) = N(l—e)(l-—r)' D
LEMMA 6. Let M(N) denote the number of integers not exceeding N that are

composed of primes less than log N. Then for any ¢ > 0 we have M(N) < N°*
for sufficiently large N.

ProoFr. This is easily proved. The proof may be found in Erd6s [1].

Let f be a multiplicative arithmetic function with f(p) = p — k for prime p
greater than k. We need not consider the values of f at higher prime powers
or at primes not exceeding k.

THEOREM. Let f be as above. If 8 < 3 — 2V2 , then there are infinitely many
m such that, for more than m® square-free integers q, we have m = f(q).

PROOF. If 1 < (V2 — 1)/2 and € < ¢(2) there are, by Lemma 10, at least
e(log N)'*'(log N)~! primes in the interval (k, (log N)'*'] such that p — k is
composed of primes less than log N. Let u = ¢/2 and let r = (¢ + 1)~'. By
Lemma 5 the are at least N ~*X1=" square-free integers ¢ < N that are
composed of these primes. Let W be the number of values of f(q) for these
square-free integers. Since

fg)=1l(p - k)
plg

we see that f(q) is divisible only by primes less than log N for each of these q.
By Lemma 6 we have W < M(N) < N* for large N. By the pigeon-hole
principle there is an m < N such that, for at least
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N(l—u)(l—r)—u > N(I—r)—e > m(l—r)—e
of these g, we have m = f(g). If 6 <3 — 2V2 we can choose t < (V2 —
1)/2and e < e(f)sothat (1 — r) — e = t(1 + £)~! — ¢ > §, since
V2 -1/2 _
1+ (V2 - 1)/2
Thus for 6§ < 3 —2V2 and N sufficiently large, we have, for some m < N,
more than m?® square-free integers g such that m = f(g). The theorem follows.

O

-2V2.
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