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VALUES TAKEN MANY TIMES BY EULER'S PHI-FUNCTION

KENT WOOLDRIDGE

Abstract. Let bm denote the number of integers n such that <p(n) — m,

where c/> is Euler's function. Erdós has proved that there is a S > 0 such that

bm > ms for infinitely many m. In this paper we show that we may take S to

be any number less than 3 — 2V2 .

We begin with a lemma that is a simple case of Theorem 3.12 in [2].

Lemma 1. Let a and k be relatively prime positive integers of opposite parity.

Then for any e > Owe have

2      K (8 + e)H(a, k)N(\og, N )~2
p<N

ap + k prime

for N > Nq, where

H(a, k)=H(l-(p- iy2) J[(p- \)(p - 2)-1
p>2 p\ak

P>2

and where N0 depends only on e.

Next we need a well-known lemma, whose proof may be found in [3].

Lemma 2. Let dx, d2, . . . be a sequence of complex numbers such that

2™-xd„n~x is absolutely convergent. Then if

2 cmm~s =  2 m~s 2 d„n-s       (Re j > 1),
m™ 1 m= 1 n=\

we have

oo

Jim x'1 2 cm = 2 dnn~x.
*->00 m<x „_,

Let k be a fixed positive integer. Let t be a positive number and let

r = 1/(1 + /)• Let G(N, k, t) denote the number of primes p greater than k

and not exceeding A for which/» - k has a prime divisor q such that q > Nr.

Lemma 3. For any e > 0 and any positive t < ( V2 — l)/2 we have

G(N, k, t) < 4(1 + e)/(l + i)A(log A)-1 (1)

for sufficiently large N.
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Proof. Fix e > 0. Letp be a prime such that k <p < N. Suppose q > Nr

is a prime dividing/? — k. Then/? — k = aq with (a, k) = 1 and a <, Nl~r.

Clearly a and k are of opposite parity. Thus

G(N,k,t)<      2        2' i=   2'      2     i       (2)
k<p<N        a<Nx-r a<N'-' q<(N-k)/a

(p - k)/a prime aq + k prime

where the prime indicates that the sum is over integers a such that a and k are

of opposite parity and (a, k) = \.

We shall show that, for a < Nx~r, we have

(¿V - *)(log ^Lzlj   2 <N(r\ogNY2 (3)

for N > M, where M is independent of a. Since the left-hand side of (3)

increases with a, the assertion (3) is true if it holds with a replaced by Nx~r.

The resulting inequality is easily shown to be equivalent to

- r2k(logN)2 < 2rNlogNlog(l - kN~x) + N(\og(l - kN~x))2. (4)

Note that x log(l — kx~x) -» — k as x -* oo. This implies that the right-hand

side of (4) is 0(log N). The assertion (3) follows.

If we use Lemma 1 together with (2) and (3) we have

G(N, k, t) < 8(1 + e)N(rlogN)~2    2    H(a,k)a~x. (5)
a<N''r

Define the multiplicative function / by/(2) = \,f(p) = 1 + (p — 2)~x for

p > 2, and

Then we have

where

f(n) = \if(p)= n(i + —î-A
p\n p\n  \ P        ¿I

p>2

H(a, k) = Df(k)f(a),

d=n^+^-^r-
»>2\ P(P-¿)J

Thus

^H(a,k)a-x = Df(k)^f(a)a-x. (6)
a<x a<x

We will use Lemma 2 and a partial summation to estimate the last sum.

First assume that k is even. Then, for Re s > 1,

ï'f(n)} = ll\i+ f(p)( ¿ + 4; + • ■ • ) I = *«*<*).
»-1      m   p\k\ \P    p23 I)
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where

**>-n(i-¿)n{i+577-37).
p\k\       P Ip\k\       P (P - 2)}

The product converges absolutely for Re s > 0.

Now assume that k is odd. Then, for Re s > 1,

.!>>7-(y*?+"-)£{,+M?+¿+-'-)}
P>2

= «*)*(*),

where

/»2

In either case, we can conclude from Lemma 2 that

lim x-x 2'/(«) = g(\) = i(*)^ n (l +   ,l A
*-*<*>       n<x k    p{k \      p(p - 2) j

p>2

where B(k) equals 1 or \ according as k is even or odd.

Let

C(x) = 2 /(") = g(l)x + o(x).
n <x

We have

n<x    n x J\      u

= 0(1) + g(l)log x + o(log x). (7)

Combining (6) and (7) we see that

2Z'H(a,k)a~x ~ Df(k)B(k)^- II (l +    ,   l   -> ) log x
a<x k       p\k  \ p(p - 2) )

P>2

-ilogx. (8)

Combining (5) and (8) we see that, for large A,

G(N,k,t) < 4(1 + e)f(l + i)A(logA)-1,

since (1 - r)/r2 = t(\ + t).   □

Note that the Prime-Number Theorem implies that Lemma 3 is trivial if

t > (V2 - l)/2.
Let P(N, k, f) denote the number of primes in the interval (k, N] such that

p — k is composed of primes less than Ar, where r = (1 + r)~'. Then

tt(A ) = ir(k) + G(N, k, t) + P(N, k, t). (9)
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Lemma 4. For any t < (V2 — l)/2 and any

e < e(/) = (1 - 4/(1 + /))/ (2 + 5/ + 4/2)

we have

P((logN)'+x, k, t) > e(\ogN)'+x(log \ogN)~x,

provided N is sufficiently large.

Proof. Choose t < (V2 - l)/2 and e < e(t). By the Prime-Number Theo-

rem we have

»((log N)'+x) - ir(k) > j^j(logN)'+l(loglogN)-x (10)

for large N. By Lemma 3 we have

G((logN)'+x,k,t) < 4(1 + e)f(logyV)'+1(loglogA0_1 (11)

for large N.

Combining (9), (10), and (11) we see that

P((logN)'+x,k,t)

> {(1 -e)(t+ l)-1-4(l-f-£)/}(log/V)'+1(loglog/V)-1   (12)

for large N. Since t < (V2 - l)/2, we have (t + 1)_1 — 4/ > 0. It is easy to

check that if e < e(/), then

(1 - e)(t + l)"1 - 4(1 + e)t > e. (13)

If we combine (12) and (13) we have the result.   □

Let Q(N, k, t) denote the number of square-free integers not exceeding N

that are composed of the primes counted by -P((log N)'+x, k, t).

Lemma 5. For any t < (V2 - l)/2 and any e we have Q(N, k, t) >

N(X-eXl-r)for ¡arge Nj where r = <t+  1)-'.

Proof. Let / < (V2 — l)/2 and assume without loss of generality that

£ < e(i) < 1. Let u = e/2, and let

c = c(t, N) = log N((t + l)loglogA0~'.

Let d = [c]. Suppose q is square-free and has d prime factors that are counted

by P((log N)'+x, k, t). Then q < (log A/y*-1-') = N. The number of such q is

the binomial coefficient B = (pd), where P = P((log N)'+l, k, t). By Lemma 4

we have

P >e(\ogN)'+x(\og\ogN)-x.

Since

CWt)" •»->■>«.
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we have

B>^ >(e(t+\)(logN)')d. (14)

For large A we have

(l-M)logA (l + »)logA

(t + l)log log A (t + l)log log A K   '

and

loglog7V>(L±iiKzM£). (16)

Now, using (15) and (16), we have

ed > exp((l + «)log e log A((f + l)log log A )_1)

> exp(-i«(l + ¿r'logAO = A-"(1-r>. (17)

Also,

(log A)"* > exp(f(l - «)log N((t + l)loglogA)"'loglogA)

= exp(i(/ + 1)~'(1 - w)log A) = /v(1-u)(1-r). (18)

Using (14), (17), and (18), we see that

Q(N, k,t)>B> tfO-"Xi-'>-«a-'> = ifd-M-r)    n

Lemma 6. Let M(N) denote the number of integers not exceeding N that are

composed of primes less than log A. 77iew for any e > 0 we have M(N) < Ae

for sufficiently large A.

Proof. This is easily proved. The proof may be found in Erdós [1].

Let / be a multiplicative arithmetic function with f(p) = p — k for prime p

greater than k. We need not consider the values of / at higher prime powers

or at primes not exceeding k.

Theorem. Let f be as above. If 8 < 3 — 2V2 , then there are infinitely many

m such that, for more than ms square-free integers q, we have m = f(q).

Proof. If / < (V2 - l)/2 and e < e(t) there are, by Lemma 10, at least

e(log A)'+1(log A)-1 primes in the interval (k, (log A)'+1] such that/? — k is

composed of primes less than log A. Let u = e/2 and let r = (t + 1)_1. By

Lemma 5 the are at least N^~"^x~r) square-free integers q < N that are

composed of these primes. Let W be the number of values of f(q) for these

square-free integers. Since

f(q) = H(p-k)
p\q

we see that/(«7) is divisible only by primes less than log A for each of these q.

By Lemma 6 we have W < M(N) < A" for large A. By the pigeon-hole

principle there is an m < A such that, for at least
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jy(X-u)(X-r)-u  ^ jy(l-r)-e   ^ m(X-r)-e

of these q, we have m = f(q). If 5 < 3 - 2V2   we can choose / < (VI -

l)/2 and e < e(/) so that (1 - r) - e = t(\ + t)~x - e > 8, since

(^-W2     =3-2V2.

1 + (V2 - l)/2

Thus for 8 < 3 — 2V2  and N sufficiently large, we have, for some m < N,

more than ms square-free integers q such that m = f(q). The theorem follows.
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