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THE STRONGLY PRIME RADICAL1

W. K. NICHOLSON AND J. F. WATTERS

Abstract. Let R denote a strongly prime ring. An explicit construction is

given of the radical in R-mod corresponding to the unique maximal proper

torsion theory. This radical is characterized in two other ways analogous to

known descriptions of the prime radical in rings. If R is a left Ore domain

the radical of a module coincides with the torsion submodule.

1. The strongly prime radical. The terminology of radicals in modules is that

of Stenstrom [3]. Throughout this paper all rings have a unity and all modules

are unital left modules. For a ring R the category of Ä-modules is denoted by

R-mod.

A functor a: R-mod —> Ä-mod is called apreradical if a(M) is a submodule

of M and o(M)a Q o(N) for each morphism M —> N in R-mod. A preradical

a is called a radical if o(M/a(M)) = 0 for all M E R-mod. A preradical a is

called left exact if a(N) = N n a(M) whenever N Q M in Ä-mod (equiv-

alent^, if a is a left exact functor). One method of constructing left exact

radicals is given by the following result.

Proposition 1. Let cD\i be any nonempty class of modules closed under

isomorphisms. For any module M define

a(M)= n{K\K E M,M/K E6^).
i

It is assumed that o(M) = M ij M/ K G 9It Jor all K C M. Then

(1) o[M/a(M)] = OJor all modules M;

(2) ij <Dlt is closed under taking nonzero submodules, o is a radical;

(3) ij 'D1L is closed under taking essential extensions, then o(M) n N C a(N)

Jor all submodules N C M.

In particular, a is a lejt exact radical if 91c is closed under nonzero

submodules and essential extensions.

Proof. The proofs of (1) and (2) are straightforward and so are omitted;

the last sentence follows from (2) and (3). To prove (3) let N Ç M be

modules. We must verify that N n a(M) C K whenever N/K E <D1L. By

Zorn's lemma, choose W maximal in

S = { W\K ÇWç=M,WnN=K).
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We claim that ( W + A)/ W is essential in M/ W. For if

x/w n (w + N)/w = o

where X/W =£0 then X d W so X n A d K by the choice of W. Suppose

x E (X n A) - K. Then

x+ WEX/WC\(W+N)/W=0

so x E A n IP = A, a contradiction. Hence ( W + A)/ W E M/ W is es-

sential. Since

(W+ N)/W = N/(W C\N) = N/K E 9H,

it follows that M/ W E 911 and so a(M) ç If. Thus o(M) n A Ç W n A

= A as required.   □

We are going to apply this to the following class of modules: An R-module

M is called strongly prime [1] if M =£ 0 and, for each nonzero element

m E M, there exists a finite subset (r„ . . ., rk) C R (depending on m) such

that rr¡m = 0 for all / (r E R) implies r = 0. In [1] the set (r„ r2, . . ., rk) is

called an insulator for m. A ring R is called left strongly prime if RR is

strongly prime (this is not left-right symmetric [1, p. 212]).

Proposition 2. The class of strongly prime modules is closed under taking

isomorphic images, (nonzero) submodules and essential extensions.

Proof. It is obviously closed under isomorphic images and nonzero sub-

modules. If M C X is an essential extension and M is strongly prime let

0 ¥= x E X. Then Rx n M ¥= 0, say 0 ¥= rx E M, r E R. Then if

{/,,..., rk) is an insulator for rx it is clear that {rxr, . . ., rkr) is an insulator

for x.   □

Now define the strongly prime radical ß on Ä-mod by

ß(M) = D {K\K ç M, M/Kstrongly prime},

where we assume that ß(M) = M whenever M has no strongly prime images.

Observe that every strongly prime module is faithful. If M is strongly prime

and 0 ¥^ r E R then rM i= 0, say rm ^ 0, m E M. If {rx, r2.rk) is an

insulator for rm then it is also an insulator for r in RR. It follows that R is left

strongly prime if and only if it has a strongly prime module [1, p. 220]. In

particular, ß(M) = M for all M E R-mod unless R is a strongly prime ring.

In this case Propositions 1 and 2 give:

Proposition 3. If R is left strongly prime then ß is a left exact preradical on

R-mod.

If o and p are two preradicals on Ä-mod, we say that p is larger than a

(written p > a) if p(M) D o(M) for every module M E R-mod. Then we

have:

Theorem 1. Let R be left strongly prime. Then ß(R) = 0 and ß > o for

every left exact preradical o on Ä-mod such that o(R) = 0.
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Proof. Clearly ß(R) = 0 (since RR is strongly prime). Suppose a is a

preradical on Ä-mod for which o(R) = 0. Given M E R-mod we must show

o(M) C ß(M). If not then a(M) £ K for some K C M with M/K strongly

prime. If a: M —> M/K is the natural map then

0 =£[o(M) + K]/K = a(M)a Q a(M/K)

so it suffices to show that o(M) = 0 whenever M is strongly prime. Suppose

on the contrary that 0 =£ m E a(M). Let (r„ . . ., rk) be an insulator for m

and define X: R —> Mk by rX = (rrxm, . . . , rrkm). This is an 7?-monomor-

phism and RX C a(M)k Q a(Mk). But a is left exact so a(R) = 0 implies

0 = a(RX) = RX n a(Mk) = RX,

a contradiction.   □

A nonempty class ?T of modules is called a pretorsion class if it is closed

under quotients and direct sums; if in addition ?T has the property that M/K,

K E 9" imply M E 5", then 9" is called a torsion class. A pretorsion class is

called hereditary if it is closed under taking submodules. If a preradical a on

Ä-mod is given, the class ?T0 = (A/|a(M) = Af) is known to be a pretorsion

class and the assignment o <-^ ?T0 is a bijection between left exact preradicals

and hereditary pretorsion classes [3, p. 138] under which left exact radicals

correspond with hereditary torsion classes [3, p. 139]. In particular, if R is left

strongly prime and ß is the strongly prime radical on Ä-mod, then Theorem 1

implies that ^ß is the torsion class of the largest hereditary torsion theory [3,

p. 141] on Ä-mod for which R is torsion-free. The existence of a unique

maximal proper torsion theory on i?-mod was given in [1, p. 220].

2. Further characterizations of the strongly prime radical. In this section we

present two characterizations of the strongly prime radical which are analogs

of well-known descriptions of the prime radical of a ring. The first gives a

generalization of the notion of an w-system. A subset X of an R-module M is

called an Jm-system if X ^ 0 and for each x G X there is a finite subset

F Ç R (depending on x) such that rFx n X =£ 0 for all 0 ¥" r E R.

Proposition 4. IJ N C M are modules then M/N is strongly prime ij and

only ij M — N is an Jm-system.

Proof. If M - N is an/m-system then M/N ^ 0 and, if m G N for some

m G M, choose F = [rx, . . . , rk) Ç R such that rFm n (M - N) =£ 0 for

ail 0 ^ r G R. Then F is an insulator for m + N. For the converse, reverse

the argument.   D

One immediate consequence of this proposition is that subdirect products

of strongly prime modules are strongly prime. Alternatively, if K¡ C M, i G /,

are submodules such that M/K¡ is strongly prime for each i E I, then

M/ D K¡ is strongly prime. This follows since M - fl K,■ = U (M - K¡)

and the union of a collection of /w-systems is again an /w-system. In
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particular, either ß(M) = M or M/ß(M) is strongly prime for every module

M.

Theorem 2. Let R be a left strongly prime ring and let ß denote the strongly

prime radical in R-mod. Then

ß(M) = {m E M\ each fm-system X with mEX has OEX)

holds for each module M. Furthermore ß(M) is the unique smallest submodule

of M with the property that M/ß(M) is strongly prime or zero.

Proof. The last sentence follows by the preceding remark. Write

B = {m E M\ each/m-system X with mEX has 0 E X }.

If ß(M) ^ M then M — ß(m) is an/m-system which does not contain zero so

B C ß(M) in this case. This clearly holds if ß(M) = M.

Now suppose m E B; we must show m £ ß(M). There is an/m-system X

with mEX and 0 6* X. Let S = {K ç M\K a submodule and K n X =

0}. Then 0 E S and, by Zorn's lemma, we may choose a maximal member K

of S. Since m E A we are finished if we can show that M/K is strongly

prime, equivalently that M — K is an fm-system. Given m, E M — K then

Rmx + A meets A by the maximality of A, say rmx + k = x E X. Since A is

an/m-system, choose a finite set F = {rx, . . ., rt) G R such that sFx n X =£

0 for each 0 ¥= s E R. If sr¡x E A" for such an s, then .w/m, + sr¡k E X. But

A n A = 0 and sr¡k E A so it follows that sr¡rmx E A. Thus

sr¡rmx £ s(Fr)mx n (M - A)

and so M — A is an/m-system as required.    □

Note that this argument yields slightly more. If X0 is any fm-system with

Oí I0 then Zorn's lemma produces a maximal fm-system X D X0 with

0 £ X. If we now choose A as in the proof of Theorem 2 then X Q M — K

(since A n A = 0) and hence X = M - A by the maximality of A. Thus

Corollary. // X is a maximal fm-system such that 0 & X in a module M

then A — M - X is a submodule with M/K strongly prime. In particular, a

module M contains an fm-system X with 0 & X if and only if M has a strongly

prime image.

We now turn to a characterization of the strongly prime radical which is

analogous to the lower radical construction of the prime radical of a ring.

Given a module M, inductively define an ascending chain of submodules Mx,

X an ordinal, as follows:

(1) M0 - 0;
(2) if A is a limit ordinal, define Mx = U^M^;

(3) if X = p + 1, define

given a finite nonempty subset F C R,

there exists 0 i= r E R such that rFm Q M j '
MK = Mß+x=    mEM
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Clearly Mx C Mx+X so these Mx axe an ascending chain of submodules. If y

is the least ordinal for which My = My+X write My = L(M).

Theorem 3. IJ R is left strongly prime and ß is the strongly prime radical in

R-mod then ß(M) = L(M) holds for every M E Ä-mod.

Proof. Let L(M) - My - My+V We show first that ß(M) C My. If My =

M this is clear. Otherwise it suffices to show M/ My is strongly prime. If

m G M — My then m G My+X so there exists a finite set F = (r„ . . . , rk] Q

R such that rFm £ M for every 0 =£ r E R. Thus rFm n (M — My) ¥= 0 for

all 0 ^ r E R so M — My is an/w-system as required.

To prove My C ß(M) we prove inductively that Mx Ç ß(M) holds for

every ordinal X. The only case where proof is required is when X = p + 1 for

some ordinal ft. Assume M Q ß(M) and suppose w G Mx — ß(M). Then,

since M — ß(M) is an /w-system, there exists a finite set FER with

rFm n [M - ß(M)\ i- 0 for all 0 i- r G R. But w G Mx = A//J+1 means

there exists 0 =£ r0 E R such that r0Fm C M . This contradiction shows that

Mx C ß(M) and so completes the induction.   □

One important class of strongly prime rings is the class of domains. We

now relate ß(M) for M G Ä-mod to the set of torsion elements t(M) where

R is a domain. Recall that t(M) = (w G M\rm = 0 for some O^rES}.

Proposition 5. If R is a domain then ß(M) C r(M) for all M E Ä-mod.

Proof. We use Theorem 3 and show inductively that Mx C t(M) for every

ordinal X. Again we need only discuss the case when X = p + 1 for some

ordinal ft and AfM E t(M). Let w G Mx. Then the definition of MM+1 (with

{1 ) = F) shows that there exists 0 ¥= r E R with rm E M^. Thus srw = 0 for

some 0 =£ s G R and, since R is a domain, this shows that m G r(M).   □

In the case of left Ore domains, Levy [2] has shown that, for each

M G Ä-mod, r(M) is a submodule of M. In this case it is easy to verify that t

is a left exact radical on Ä-mod and it is clear that r(R) = 0. Hence, by

Theorem 1, ß > t. With Proposition 5 this gives:

Proposition 6. // R is a left Ore domain, then t(M) = ß(M) for all

M E Ä-mod, that is r = ß on i?-mod.

3. The faithful prime radical. The preceding work can be repeated to deal

with the radical determined by the class cdii0 of faithful prime modules in

J?-mod (so we assume R is a prime ring). Then Proposition 2 is valid for ^ltg

and yields a left exact radical

ß0(M) = [K\K EM, M/K is faithful and prime}

when we set ß0(M) = M if M has no faithful, prime images. We call ß0(M)

the faithful prime radical of M. Clearly ß0 < ß over a strongly prime ring.

Define an m-system in a module M to be a nonempty subset X of M such

that, for each x E X and 0 ^= r E R, rRx n X ^ 0. Then M/N is a faithful
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prime module if and only if M — A is an m-system. Furthermore Theorem 2

has its analog for prime rings R obtained by replacing ß, "strongly prime"

and "/m-system" by ß0, "faithful prime" and "m-system" throughout. The

proof is analogous to the above and is omitted.

We also have a lower radical construction of ß0(M). A sequence Mx, X an

ordinal, of submodules of a module M is defined as before except that, when

X = p + 1, we define M)i+X = (m E M\ there is an ideal I ¥= 0 of R with

Im C A/M}. Again we find that the terminal module in this ascending chain is

ß0(M).

Finally, let F be a field with a monomorphism a: A-» F which is not onto

and let R = F[x, a] be the skew polynomial ring with coefficients written on

the left. Then A is a left Ore domain which is left primitive. In fact, if

b E F — Fa, then M = R/R(x + b) is a faithful irreducible module which is

torsion. Hence ß0(M) = 0 while t(M) = ß(M) = M and so ß0 < ß.
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