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THE UNIQUENESS CLASS FOR THE CAUCHY PROBLEM
FOR PSEUDOPARABOLIC EQUATIONS

WILLIAM RUNDELL

ABSTRACT. It is shown that the class of functions satisfying |u(x, 7)| <
Me®* forms a uniqueness class for the Cauchy problem for pseudopara-
bolic equations. The surprising fact is that, unlike the case of parabolic
equations, the constant a is not arbitrary but depends on the coefficients of
the equation.

Introduction. This paper is concerned with determining the uniqueness class
for the Cauchy problem for the pseudoparabolic equation

Lu — Mu, — c(x)u, + Mu = 0. (1.1)

Here M is an elliptic partial differential operator of second order and c(x) is a
positive coefficient. All coefficients are assumed to be bounded.

Since solutions of (1.1) are closely related to solutions of the associated
parabolic equation

Pu= c(x)u,— Mu=0 (1.2)
(cf. [1], [3]), one would expect a similarity in the uniqueness class for the
Cauchy problem, that is a solution that takes prescribed values on the axis
t=0.

For the parabolic equation if |u(x, f)] < Ce® for arbitrary fixed a, then
there is a unique solution for the Cauchy problem. For equation (1.1) we shall
see that the uniqueness class consists of functions of first order growth, that
is, |u(x, t)] < ce®™\. The surprising fact is that & in this case is no longer
arbitrary but depends on the operator L. More specifically it depends on the
lower bound for the coefficient c(x) and the modulus of ellipticity of the
operator M. We shall illustrate this with an example, deferring the statement
of the main theorem until the next section.

ExaAMPLE. There is a nontrivial solution to the Cauchy problem,

Uy — U+ u, =0, (1.3)
u(x, 0) =0, (14)
that satisfies the estimate |u(x, £)| < "2 1",
We let
(0= 3 Za) (1)
u(x, t) = - a,(! .
n=0 (2")'
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where
a()—a,_,(t)=a,(t)), n=012,...,
a,00=0, n=012,.... (1.6)

Under these conditions it is easily verified that u(x, ¢) is a solution to (1.3)
and (1.4). We choose ay(?) to satisfy 0 < ay(?) < 1.
Equations (1.6) become

a() = a0 - [ 'e=0=1g, _ (v)dr,

that is

a,() = (I — T)"ay(t)
where

= ('o-t-n

f fo e~ C~Df(r)dr.

Thus
a ()= 3 (7)(-)'T
where
T’a, = (T_lvfo'(t — 1) "le " May(r)dr.

Thus

[Tay(t)]<1, r=12..., t>0.
The last estimate follows by taking the maximum of the integrand and using
Stirling’s formula. Thus a,(?) satisfies
a,(t) <2, n=01..., t>0,
and equation (1.5) yields the estimate

|u(x, 1)| < eVZin,

We first introduce some notation. We denote by D, the ball {x € R™:
|x| < R} and by C**%(D,) the Banach space consisting of those functions
whose derivatives of order k are Holder continuous in D with exponent a,
0 < a < 1. It is assumed that this space is equipped with its usual norm. By
C¥**(Dg) we mean the closed subset of C**%(D,) consisting of those
functions that vanish on the sphere |x| = R.

We shall consider solutions u(x, ) of the equation

Lu=(M—cl)u,+ Mu=0 .1

for x €R", t > 0. Here I is the identity map and M is an elliptic partial
differential operator of the form
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n 82 n a
M= — Uz-lmy(x)—m + 121 m,-(x)a—% + m(x) 2.2)
such that
(a) the coefficients lie in C*(Dg) for each R > 0 and there is a constant X
such that |m;(x)| < K, |[m(x)| < K,0 <m(x) < K,x ER", 1 <ij <n;
(b) there is a constant m, > 0 such that

S m()8g > me S 8

LN At

whenever x and § = (§,, ..., £,) €ER"

We shall also assume that the coefficient c(x) lies in C*(Dg) for all R > 0
and, for some positive constants u and X,

O0<p<c(x) <K, x€ER. (2.3)

By a solution to (2.1) we mean a function u(x, #) such that for each R > 0:
@) u(-, ) € C***(Dy) for all ¢ > 0, (i) the map from [0, c0) to C2*%(Dy),
t - u(-, t) is continuously differentiable, (iii) u(x, 7) satisfies (2.1) for x € R”
and ¢ > 0.

Our main result is the following:

THEOREM. Let u(x, t) be a solution of (2.1) with u(x, 0) = O that satisfies the
estimate
|u(x, )| < Ce*™, x€R", t>0,
for some constants C and a with a </ p/myg . Then u(x, t) = 0 for (x, t) €
R” X [0, o0).
PRrROOF. Fix R > 0, and let ¢, (x) satisfy

M, =Nmgp,, O<A<V p/my, |x|<R,
¢X = em, le = R. (2.4)
Then an application of the maximum principle for elliptic operators shows
that ¢,(x) > 0 for x € Dg. The presence of the constant m, in (2.4) means

that we have essentially divided equation (2.1) by m,, in order to “normalize”
the operator M.

If we put
Y(x, 1) = Cel@NRNmyt(u—Nm)) ™' (1), (2.5)
then
v=yY—u (2.6)
satisfies

Lo = f(x, t), x € Dg, t>0,
o(x,0) = h(x), x € Dy,
o(x, 1) = g(1), |x|= R, t>0, 2.7
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where
Nmg(p — ¢(x))
p = Nmg
h(x) = Ce'*~MRg, (x) > 0, (2.9)
g(2) > Ce®ReXmas(n—Nmo)™' _ cgaR 5 ¢, (2.10)
We wish to show that v(x, ) > 0 for x € Dg, t > 0. Unlike the case of a
parabolic equation we are unable to achieve this by appealing directly to a
maximum principle (cf. [2]). We shall instead convert the initial boundary
value problem (2.7) into an integral equation with positive kernel and free
term.
We define G(x, ) € C***(Dy) by
(M — ¢(x)I)G =0, |x] <R, t>0,
G(x,t) = e'g(1), |x|=R, t>0. (2.11)
Again by the maximum principle for elliptic operators we have that G > 0 in
Dg X [0,0). As a function of ¢, G(-,¢?) is continuously differentiable for ¢ > 0.
If we make the transformation
w(x, t) = e'v(x, t) — G(x, 1), (2.12)
then w(x, f) € CZ**(Dg), w(-,?) is continuously differentiable in ¢ and satis-
fies

f(x, t) = Ce(a—A)ReA‘mot(#—x%o)-'{ ]4,}‘(,;) <0, (2.8)

(M — c(x)I)w, + c¢(x)w = ef — G, |x|]<R, t>0,
w(x, 0) = h(x) — G(x, 0), |x| < R,
w(x, 1) =0, |x|=R, t>0. (2.13)
If we rewrite this in the space C(Dg) we obtain
w, — Aw = B(e'f — G),

w(0) = h — G(-,0), (2.19)

where 4 and B denote the operators from C*(Dy) to C2*%(Dy) defined by
Au = — (M — c(x)I)"c(x)u, (2.15)
Bu=-(M— c(x)I)"u. (2.16)

The maximum principle shows that u > 0 pointwise in Dy implies that
Au > 0and Bu > 0 pointwise.
If we integrate (2.14) with respect to ¢ from O to ¢ we obtain

w(t) = fo "Aw dr + H(t) (2.17)
where

H(t) = fo "B(G — e’f)dr + h — G(,0). 2.18)
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We note that the integrand in (2.18) is nonnegative and hence H(#) will be
nonnegative provided h(x) — G(x, 0) > 0 in D;. However the function 6(x)
= h(x) — G(x, 0) € C2**(Dy) satisfies

(M = c(x)1)8(x) = Ce“ MR[Nmy — c(x)]er(x) <O (2.19)

since A2my < p < ¢(x) for x € Dy and ¢,(x) > 0 in Dy. The maximum
principle now implies that §(x) > 0.

Picard iteration applied to (2.17) shows that w(x, f) > O for x € Dg, t > 0.
The positivity of G and (2.12) yields the desired conclusion that v(x, £) > 0 in
Dy X [0,00).

Thus for each R > 0

u(x, t) <yY(x,t) = Ce(""‘)ke"z'”"‘("""z’"")_'¢)\(x). (2.20)
For any a <V p/m, we may choose a A such thata <A <V p/m, and

let R — o0 in (2.20) to obtain u(x, f) < 0 in Dy X [0,00). Applying the above
analysis to — u yields the conclusion of the theorem.
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