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DYNAMICAL SYSTEMS WHOSE ORBIT SPACES ARE

NEARLY HAUSDORFF

ROGER C. McCANN

Abstract. Consider a continuous flow on a locally compact, separable,

metric space. If the set of nonperiodic recurrent points is nowhere dense,

then there is an open, dense, invariant subset of the phase space which has a

Hausdorff orbit space. A separatrix is defined to be a trajectory which is in

the closure of the set of trajectories at which the orbit space is not

Hausdorff. If the flow is completely unstable, then the set of points which lie

on séparatrices is nowhere dense in the phase space.

Introduction. Orbit spaces and their topological properties arise in a natural

way when the trajectorial structure of a continuous flow is studied, e.g., in [2],

[4], and [6]. One of the fundamental concepts of trajectorial structure is that

of a parallelizable flow. Parallelizable flows have been studied and char-

acterized in [1], [2], and [7, §2.4]. If the flow is parallelizable, then the natural

mapping of the phase space onto the orbit space is the projection of a fiber

bundle. One immediate consequence of parallelizability is that the orbit space

is Hausdorff. If a flow on a locally compact, separable, metric space has a

Hausdorff orbit space, then there is a natural generalization of the fiber

bundle structure for parallelizable flows [6]. Hence, flows with Hausdorff

orbit spaces are a natural generalization of flows which are parallelizable.

Flows with Hausdorff orbit spaces also arise in the study of completely

unstable flows [4]. Clearly, it is very restive to assume that a flow has a

Hausdorff orbit space. In this paper we will show that if a flow on a locally

compact, separable, metric space has a nowhere dense set of nonperiodic

recurrent points, then there is an open, dense, invariant subset U of the phase

space such that the orbit space with respect to U is Hausdorff. A separatrix is

a trajectory which is in the closure of the set of trajectories at which the orbit

space is not Hausdorff. In the case that the flow is completely unstable, we

will show that the set of points which lie on séparatrices is nowhere dense in

the phase-space.

1. Basic definitions and properties of continuous flow. Throughout this paper

X will be a locally compact, separable, metric space and R, R+ will denote

the reals and nonnegative reals, respectively.

A continuous flow tt on A- is a continuous mapping of X X R onto X
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satisfying the following axioms (where xwt = it(x, t) for (x, t) E X X R):

(1) xirO = x for x E X,

(2) (xirt)iTS = xir(t + s) for x E X and t,x E R.

For A c A and B c R, AirB will denote the set {xirt: x E A, t E B). In the

special case B = R we will write C(^4) instead of AirR. If /I consists of a

single element x, we will write xitB instead of {x)itB. For x E A, C(x) is

called the trajectory through x. A set A c X is said to be invariant if

C(j4) = A. If C(x) = {x}, x is called a critical point. The set of all critical

points will be denoted by S. If x E X is noncritical and xirt = x for some

/ =7*= 0, then x is said to be periodic. The set of all periodic points will be

denoted by 6*. If x E 9 and A is Hausdorff, then r^ = inf{f > 0: xttt = x)

exists and is positive. The mapping defined by x -> tx is called the fundamen-

tal period function.

If x, y E A, we write xCy if and only if x E C(y). Evidently C is an

equivalence relation on A. The topology of X/C will be the quotient

topology. X/C is called the orbit space of it. If ^4 c X is invariant we will

write A / C for the orbit space of w|(/1 XRy

Let x E A. Then L+(x) [L~(x)] will denote the positive [negative] limit set

of x. A flow is said to be unstable if no limit set is compact. An x E X is

called recurrent if C(x) = L+(x) = L~(x). <3l will denote the set of all

recurrent points. An x E X is called wandering if there is a neighborhood U

of x and ans E R such that (L%f) n U = 0for all t > s. Wwill denote the

set of all wandering points. Evidently W is open. A flow is called completely

unstable if every x E X is wandering, i.e., W = X.

The prolongation D(x) of x is Z>(x) = D+(x) u £>~(x), where £>+(x) is

the set { v E A: there exist sequences {x,} in A and {/,} in A+ such that

x¡ -* x and x¡irt¡ ->y} and Z> ~(x) is defined analogously. It can be shown

that A/ C is Hausdorff if and only if C(x) = D(x) for every x E X (e.g., see

[6, Proposition 2.4]).

The prolongational limit set J(x) of x is J(x) = J+(x) u /~(x) where

/ +(x) is the set { v E A: there exist sequences {x¡) in A and {f,} in A + such

that x,- -* x, t¡ —> oo, and jc,ir/, -» v) and / ~( v) is defined analogously. *r is

said to be parallelizable if there exist a subset A of A and a homeomorphism

h: X -+ K X R such that KirR = X and h(xirt) = (x, t) for every (x, ()£i

x A. If A is a locally compact, separable, metric space, then it is paralleliz-

able if and only if J(x) = 0 for each x E A [1, Theorem 3].

A subset T of A is called a local section of extent X, X > 0, if (Tirt) n T =

0 for 0 < |/| < X. T is said to generate neighborhoods of x E T if for

arbitrarily small a > 0, Tit(-a, a) is a neighborhood of x. T is said to be

interior in A if, for sufficiently small a > 0, 7V( — a, a) is an open subset of A.

If x E A is a noncritical point of it and A is a Tychonoff space, then there

exists a local section T which generates neighborhoods of x [2, §VI, Theorem

2.12]. It can be shown that T may be chosen to be interior in A. If T is an
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interior local section and U an open set, then T n U is an interior local

section.

If U is a subset of X, then int U and 9 U will denote the interior and the

boundary of U respectively.

2. Orbit spaces.

Proposition 2.1. IJ W =£ 0, then there is an open, dense, invariant subset

Wx of W such that J(WX) n Wx = 0.

Proof. Evidently x G W if and only if there is an invariant neighborhood

U of x such that J(U) n U = 0. Set F = ( U c W: U open and invariant,

/({/) n u = 0}. Let {t/,} be a chain in F and set V = U C/,. Since J(U¡) n

U¡ = 0 for each i, it is easy to verify that J( V) n F = 0. Hence, F is a

maximal element for {U¡}. By Zorn's lemma there is a maximal element Wx

of F. Suppose If, is not dense in W. Then there exist an x G W — Wx and

an open invariant neighborhood U0 E W - Wx of x such that/({/„) n U0 =

0. Then U0u Wx E F. This contradicts the maximality of Wx. Hence, Wx is

dense in W.

Proposition 2.2. // int ty ¥= 0, then the set tyx of points at which the

fundamental period function is continuous is an open, dense subset of int ty.

Proof. Let T(x) denote the fundamental period of x E ty. It is known and

easy to prove that lim infy^,xT(y) > T(x), i.e., T is lower semicontinuous.

Theorem 1 [3, p. 394] states: "The set D of points of discontinuity of ai

measurable function of class 1 is of the first category". Hence, T is continu-

ous on a dense subset of ty. Let T be continuous at x E int ty and let T be

an interior local section of extent A which generates neighborhoods of x and

is such that T n C(x) = {x}. We will first show that there is an open

neighborhood U of x such that C(y) n T = {v} for every y G U n T.

Suppose the contrary. Then there exists a sequence {x¡) in ty n T such that

x¡ -> x and x,77-i, G T for some /, G (0, T(jc,.)). Since yrr(T(y) - a) = yir(-a)

for every a E R and T has extent A, eventually we must have

t, G[A,T(x,)-A]c[A,T(x)-iA].

Let (s,} be any convergent subsequence of {/,.} with s¡^> s G [A, T(x) — ¿A].

Then xtts <— x,77s, G F. This contradicts the assumption that T n C(x) =

{x}. Hence, there is a neighborhood U of x such that C(y) n T = {y) for

every v G T n t/. Without loss of generality we may assume that T was

chosen originally so that Fci/fl (int "iP). We will now show that T is

continuous at each point of T. Let y G T and { v,} be a sequence in X such

that^, -» v. Since F is interior and F c int ty we may assume that v, G C(T)

n 9" for each i. For each a G (0, jT(v)), Tir( — a, a) is a neighborhood of

y = v7rT( v). Eventually Tir(-a, a) is a neighborhood of y, and v,7rT(v). Then

there exist s„I, G (-a, a) such that v,™, G Fand (yiirT(y))irti G F. Since
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and
C(yiTTSi) n T= {v,7rj,}

we must have T(y¡) is a positive integer multiple of T( v) + /, — j,. Hence,

eventually T( v,) < T( v) + 2a. Since a E (0, jT( v)) was arbitrary we have

lim sup^^TXz) < T( v). This coupled with the lower semicontinuity of T

yields the continuity of T on T and, hence, on C(T) which is an open

neighborhood of x. The desired result follows.

Proposition 2.3. Let Wx and <3>x be as in Propositions 1 and 2. Set

§, = int S. Then each of Wx, <3)1, and S, has a Hausdorff orbit space.

Proof. Since J( Wx) n Wx = 0, the now 7r| w is parrallelizable. It follows

directly that Wx/C is Hausdorff. Since T is continuous on <?, it is easy to

show that C(x) = D(x) for every x E ÍP,. Hence, 9X/C is Hausdorff. Like-

wise it is easy to show that C(x) = D(x) for every x E S, so that Si/C is

Hausdorff.

Theorem 2.4. Let it be a continuous flow on a locally compact, separable,

metric space. Then there is an open, dense, invariant subset U of X — (51 —

(infdP u intS )) such that the orbit space of U is Hausdorff.

Proof. In [5, p. 29] it is shown that A = W u R. Let Wx, <?, and S, be as

in Propositions 1-3. Then

X = Wu& = Wx U 9i U S, U (51 - (int 5>, U int S,)) .

It follows directly that U = Wx u ($'x U Si is an open dense subset of

A - (51 - (int öp u int S)). Since Wx, €P,, S, are open, disjoint, invariant

sets with Hausdorff orbit spaces, it follows that U has a Hausdorff orbit

space.

3. Separatrices.

Definition 3.1. Two trajectories C, and C2 are said to be inseparable if any

two neighborhoods of C, and C2 in X/C have nonempty intersection. A

separatrix is a trajectory which lies in the closure of the inseparable elements

of X/C.
In the case that A is a differentiable manifold and the flow is differentiable

and unstable this definition of separatrix coincides with that given by Markus

in [4]. Roughly speaking the trajectories at which the orbit space fails to be

Hausdorff are séparatrices.

Theorem 3.2. Let it be a completely unstable flow on a locally compact,

separable, metric space X. The set of séparatrices is nowhere dense in X.

Proof. Let S and Sx denote the set of séparatrices and the set of

inseparable elements of A/ C respectively. Then Sx = S. Set F = { U c A: U

open and invariant, U ¥= X, J(U) n U = 0). It is easy to show that if x is a
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wandering point, then there exists a neighborhood Vof x such that J(V) n V

= 0. Hence, F covers A^. Since X is Lindelöf there is a countable family { U¡)

of elements of F which cover X. Let C, be any element of Sx. Then there is a

C2 G Sx such that C, and C2 axe inseparable. It is easy to show that

C, c J(C2). Let/ be such that C2 c Uj. Since J(Uj) n i/y = 0 we must have

C, c 9i^. It follows that S, c U ,°1 fiUj. Since each 9 If is nowhere dense, Sx

must be nowhere dense (Baire category theorem). Therefore S is nowhere

dense.
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