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IDEALS OF FINITE CODIMENSION IN
C[0, 1] AND LY(R)

C. ROBERT WARNER AND ROBERT WHITLEY

ABSTRACT. We characterize the ideals of finite codimension in C[0, 1] and
LY(R).

Let M be a subspace of codimension 1 in a commutative Banach algebra
with identity. It was shown in [6] and [8] that if each element x in M belongs
to a maximal ideal I, which may depend on x, then M is itself a maximal
ideal. This interesting result as first proved depended on the Hadamard
Factorization Theorem: later proofs used a one-sided Liouville Theorem
[10), [1, p. 51], [2, Problem 11, p. 111}, [4, Lemma 32, p. 1043].

This characterization of maximal ideals was extended in [11] to algebras
without identity. The main results were: (1) [11, Theorem 2): Let 4 be a
commutative Banach algebra with one generator. If a closed subspace M of
codimension 1 in A has the property that each element in M belongs to a
regular maximal ideal, then M is a regular maximal ideal. (The proof given in
[11] is in error, but it can be corrected.) An example is given of an algebra
with two generators in which this characterization does not hold. (2) {11, The-
orems 4 and 5]. Let G be a locally compact Abelian group with G sigma-com-
pact. Then a subspace M of codimension 1 in L'(G) which has the property
that each element in M belongs to some regular maximal ideal must itself be
a regular maximal ideal. (If G is not sigma-compact, then each Fourier
transform vanishes and so each subspace of codimension 1 has the property
which is meant to characterize maximal ideals.) This result is also a corollary
of the more basic result below.

THEOREM 1. Let A be a commutative Banach algebra with involution x — x*,
satisfying X* = X~ . Suppose that there is an element x, in A with X, never zero.
If M is a subspace (not a priori closed) of codimension 1 in A with the property
that each element in M belongs to some regular maximal ideal, then M is a
regular maximal ideal.

Proor. Replacing x, by x,x$, we may suppose that X, is real-valued (and
never zero). By hypothesis sp(x,) N M = (0) and so there is a linear func-
tional F (not a priori continuous) satisfying F(M) = {0} and F(x,) = 1.

We claim that x in M implies that x* is in M. For suppose not, then
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F(x*) = a # 0 and x* — ax, is in M (since F(x* — ax,) = 0). Now x + x*
— ax, belongs to M and so has hat vanishing at some point s in the regular
maximal ideal space of A; 2 Re X(s) — aXy(s) = 0 and so a is real. Also
—x + x* — ax, belongs to M and so for some ¢, —2i Im X(f) — axy(¢) =0,
and so a is pure imaginary. Hence a is zero.

We claim that x in M implies that xx, is in M. First suppose that X is
real-valued. Then xx, — F(xxg)x, is in M and so has hat vanishing at some
regular maximal ideal from which we see that F(xx) is real. Then ix + xx,
— F(xxp)x, is in M and has hat vanishing at some point s; evaluating at s we
get F(xxy) =0. For x in M, x* is also in M and so (x + x*)x, and
i(x — x*)x, are in M by the argument above. Hence (x + x*)x, — i(i(x —
x*)xg) = 2xxq is in M.

For any x, F(xxy) = F(x)F(x3). To see this, x — F(x)x, is in M and so
(x — F(x)xg)xyis in M and so F(xx, — F(x)x}) = 0.

If x and y are in M, then xy is in M. The identity 4xy = (x + y)*> — (x —
»)? shows that it suffices to prove that x in M implies that x? is in M. First
suppose that % is real-valued. Then x*> — F(x%x, is in M and has a hat
vanishing at some regular maximal ideal from which we see that F(x?) is
real-valued. Then ix + x? — F(x?x, is in M; evaluating the hat at a point
where it vanishes we see that F(x?) = 0. For an arbitrary x in M, (x —
x*)%, (i(x — x*))? and (x — x*)(i(x — x*)) are in M by what we have shown
above. Hence

4x? = (x + x*)’ + (x — x*)’ + 2(x + x*)(x — x*)
isin M.

For any x and y, F(xy) = F(x)F(y)F(x3). To show this, note that x —

F(x)xy,and y — F(y)x, are in M, so the product is in M. That is:

F((x — F(x)xo)(y — F(»)x0)) =0
or

F(xp) — F(x)F(yxo) — F(y)F(xxo) + F(x)F(y)F(x3) = 0.

Using the fact that for any z, F(zx,) = F(z)F(x3), F(xy) — F(x)F(y)F(x?) =
0.

Finally, the functional G(x) = F(x3)F(x) is seen from the above equation
to be a (nonzero) multiplicative linear functional-and therefore a continuous
linear functional-vanishing on M. Hence, M is a regular maximal ideal.
Q.E.D.

The results for algebras without identities are a special case of the natural
generalization of the codimension 1 theorem to subspaces of codimension 2.
To see this, let M be a subspace of codimension 1 in an algebra 4 without
identity. Note that if M has the property that each x in M belongs to a
regular maximal ideal, then in A,, the algebra obtained by the standard
adjunction of an identity [9], M is of codimension 2 and has the property that
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each x in M belongs to two maximal ideals in A4,.

Thus, from the failure of the codimension 1 result in some Banach algebras
without identity, we see that the natural generalization of the codimension 1
result of [6] and [8] does not always hold for codimension 2.! We give below
two examples of important algebras in which this generalization is true.

THEOREM 2. Let S be a compact subset of the real line. If M is a closed
subspace of codimension n in C(S) with the property that each function in M
vanishes at at least n distinct points of S, then M is an ideal.

PROOF. By translating S we may suppose that 0 is not in S.

The subspace sp(l, x, ..., x") is n + 1 dimensional so there is a nonzero
element g, in sp(1, x, . . ., x") N M. By hypothesis, g, has at least n distinct
zeros in S, and so, to within a scalar, gy(x) = (x — s))(x — 8) - - - (x — 5,)

where the s; are distinct points of S.

Suppose that f is a real-valued function in M. Then f + ig, is in M and
therefore must vanish at n distinct points of S; since g, vanishes only at
Sis .+ -« » S, f must also vanish at these points.

The subspace sp(x*, x**!, ..., x**") intersects M in a nonzero poly-
nomial g,. By hypothesis g, must have n roots r, ..., r, in S, and also has
zero as a root of multiplicity k. To within a scalar, g,(x) = x*(x — r) - - - (x
— r,). Because the roots ; are real, g, is real-valued, and by the argument of
the second paragraph {r,, ..., r,} = {s},...,$,}-

The subspace M must therefore contain

B = {P(x)(x — 5;)(x — s5) - - - (x — 5,): P apolynomial}.
The set B is a selfadjoint subalgebra which separates all points other than the
s;- By the general Stone-Weierstrass Theorem, the closure cl(B) of B is {f:
f(s)=0,1<i<n};sincecl B C M andcod(cl B)=n,M =cl B. QE.D.

Theorem 2 does not hold for an arbitrary C(S) algebra, S compact, for if S
contains a point s, not a G, then any element in any subspace M contained
in {f: f(sp) = 0} must have infinitely many zeros. Does Theorem 2 hold if
each point in S is a G;? Does Theorem 2 hold for S the unit disk in R??

There is an interesting approximation theory corollary to Theorem 2.

COROLLARY 3. Let P be a continuous linear projection on C[0, 1] with n
dimensional range. Suppose that P has the following interpolation property:

(*) For each f there are distinct points s,, . . ., s,, depending on f, where Pf
interpolates to f, i.e., Pf(s;) = f(s;), 1 <i <n.

Then there are fixed points t,, . . . , t, and functions f,, . . ., f, with

1Even an ideal of codimension 2 is not, in general, the intersection of two maximal ideals. It is
not hard to show that in a Banach algebra with identity, if 7 is a (closed) ideal of codimension 2,
then one of the two following disjoint possibilities holds:

(i) 1 is the intersection of two maximal ideals, or

(ii) 7 is the intersection of a maximal ideal and the kernel of a (continuous) point derivation at
that maximal ideal. Compare this with [1, Theorem 1.6.1, p. 66).
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Pf=2f(t)f, and f(t) =8,

PROOF. Let M be the kernel of 7 — P, cod M = dim R(P) = n. By Theo-
rem 2 there are points ¢,, . . . , £, with

{f:f(tl) = =f(’n) = 0} = n N(et,)v
the intersection of the kernels N(e,) of the evaluation functionals at ¢,
Write P(f) = Zx*(f)h;, where the x* are continuous linear functionals,
and sp(h, . .., h,) = R(P). By a basic lemma [3, Lemma 10, p. 421}, since
N(x})D N(e), x*=aye,
J

f
Thus
P = S1)( Sah) = TA)5
Since P is a projection :)nto its :1 dimensional range, the f; are linearly
independent, and f; = Pf; = 2 f(#)f; implies that f(#) = f;. Q.E.D.

This result is false for the space Cg[0, 1] of real-valued continuous func-
tions on [0, 1]; see [5] for related problems.

THEOREM 4. Let M be a closed subspace of codimension n in L'(R). Suppose
that each f in M belongs to at least n regular maximal ideals. Then M is an
ideal.

PROOF. Let & be a function in L'(R) with the properties:

(1) A is real valued and never zero,

(2) h(x)x’ = g for some g;in L', 1 < j < n.
For example, consider hy(x) = exp(— x2/2). For this function, Ag(x) = he(x)
[7, p. 415] and g; can be found by applying the inverse Fourier transform to
the rapidly decreasing function hy(x)x’ (e.g., [7, p. 409]). For h satisfying (1)
and (2), let N be the subspace in L' whose Fourier transform is the subspace

h(x)sp(l, x, . . . , x"). Because dim N = n + 1, N contains a nonzerokelement
w of M; by hypothesis, to within a scalar multiple W(x) = h(x}(x —
§) -+ (x —s,), with s,,...,s, distinct real numbers. If h, were another

function satisfying (1) and (2), there would be a nonzero element w, of M
with W,(x) = A, (x)(x — #,)- - - (x = 1), t;,...,t, distinct real numbers.
Since w + iw, belongs to M, {¢t,...,t,} ={s;,...,s,}. Letgyx) = (x —
s)) - - - (x —s,) and let w, be the element of M having Fourier transform
Wo(x) = I;o(x)qo(x). At this point we have seen that if h is a function
satisfying (1) and (2), then the element whose Fourier transform is If(x)qo(x)
belongs to M.

Since hgy * h, satisfies (1) and (2), the element hy *+ w, whose Fourier
transform is h3(x)go(x), belongs to M.

Suppose that f in L' has a real-valued Fourier transform f and set
b=|fllo+1 Then hysf+ bhy is in L' and has Fourier transform
hy(x)X( f(x) + b) which is real valued and never zero, and (2) is satisfied as
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well. The function h, * (hy * f + bhy) also satisfies (1) and (2) and so, by the
argument above, the element whose Fourier transform is AJ(x)(f(x) +
b)qy(x), namely (hy * f + bhg) * w,, belongs to M. Consequently f * (hy * wy)
belongs to M.

For any function g in L', let § be the function satisfying "= §~. Since
(g + 8 *(hy*wy and i(g — &) + (hy = wy) belong to M, so does
g * (hy * wy). Thus M contains the closed ideal J generated by h, * w,. Since
the hull of J is the finite point set {s,, ..., s,}, which is therefore a set of
spectral synthesis, J is the kernel of the hull of J [9,p. 86): J={g:
g(s)=0,1<i<n} Since codJ=codM=n and MDJ, M =J.
Q.E.D.

For what locally compact Abelian groups G does L'(G) have the property
(1f L'(R) described in Theorem 4? For G the unit circle, the character group
G is a subgroup of R, and the proof of Theorem 4 can be easily adapted for
this case. Does Theorem 4 hold for L'(R?)?
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