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IDEALS OF FINITE CODIMENSION IN

C[0, 1] AND L\R)

C. ROBERT WARNER AND ROBERT WHTTLEY

Abstract. We characterize the ideals of finite codimension in C[0, 1] and

L\R).

Let M be a subspace of codimension 1 in a commutative Banach algebra

with identity. It was shown in [6] and [8] that if each element x in M belongs

to a maximal ideal Ix, which may depend on x, then M is itself a maximal

ideal. This interesting result as first proved depended on the Hadamard

Factorization Theorem: later proofs used a one-sided Liouville Theorem

[10], [1, p. 51], [2, Problem 11, p. Ill], [4, Lemma 32, p. 1043].

This characterization of maximal ideals was extended in [11] to algebras

without identity. The main results were: (1) [11, Theorem 2]: Let A be a

commutative Banach algebra with one generator. If a closed subspace M of

codimension 1 in A has the property that each element in M belongs to a

regular maximal ideal, then M is a regular maximal ideal. (The proof given in

[11] is in error, but it can be corrected.) An example is given of an algebra

with two generators in which this characterization does not hold. (2) [11, The-

orems 4 and 5]. Let G be a locally compact Abelian group with G sigma-com-

pact. Then a subspace M of codimension 1 in L\G) which has the property

that each element in M belongs to some regular maximal ideal must itself be

a regular maximal ideal. (If G is not sigma-compact, then each Fourier

transform vanishes and so each subspace of codimension 1 has the property

which is meant to characterize maximal ideals.) This result is also a corollary

of the more basic result below.

Theorem 1. Let A be a commutative Banach algebra with involution x -> x*,

satisfying x* = x~. Suppose that there is an element x0 in A with x0 never zero.

If M is a subspace (not a priori closed) of codimension 1 in A with the property

that each element in M belongs to some regular maximal ideal, then M is a

regular maximal ideal.

Proof. Replacing x0 by x0x*, we may suppose that x0 is real-valued (and

never zero). By hypothesis sp(x0) n M = (0) and so there is a linear func-

tional F (not a priori continuous) satisfying F(M) = {0} and F(xQ) = 1.

We claim that x in M implies that x* is in M. For suppose not, then
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F(x*) = a ¥= 0 and x* — ax0 is in M (since F(x* — ax0) = 0). Now x + x*

- ax0 belongs to M and so has hat vanishing at some point s in the regular

maximal ideal space of A ; 2 Re x(s) — ax0(s) = 0 and so a is real. Also

-x + x* — ax0 belongs to M and so for some t, —2i Im x(t) — ax^t) = 0,

and so a is pure imaginary. Hence a is zero.

We claim that x in M implies that xx0 is in M. First suppose that x is

real-valued. Then xx0 — F(xx0)x0 is in M and so has hat vanishing at some

regular maximal ideal from which we see that F(xx0) is real. Then ix + xx0

- A(xx0)x0 is in M and has hat vanishing at some point s; evaluating at j we

get A(xx0) = 0. For x in M, x* is also in M and so (x + x*)x0 and

i(x — x*)xQ are in M by the argument above. Hence (x + x*)x0 — i(i(x —

x*)x0) = 2xx0 is in M.

For any x, A(xx0) = F(x)F(xl). To see this, x — F(x)x0 is in M and so

(x — A(x)x0)x0 is in M and so A(xx0 — F(x)xl) = 0.

If x and v are in M, then xy is in M. The identity 4xv = (x + v)2 — (x —

v)2 shows that it suffices to prove that x in M implies that x2 is in M. First

suppose that x is real-valued. Then x2 — A(x2)x0 is in M and has a hat

vanishing at some regular maximal ideal from which we see that A(x2) is

real-valued. Then ix + x2 — F(x2)x0 is in M; evaluating the hat at a point

where it vanishes we see that A(x2) = 0. For an arbitrary x in M, (x —

x*)2, (i(x — x*))2, and (x - x*)(/(x — x*)) are in M by what we have shown

above. Hence

4x2 = (x + x*)2 + (x - x*)2 + 2(x + x*)(x - x*)

isinM.

For any x and y, F(xy) = F(x)F( y)F(x$). To show this, note that x —

A(x)x0 and v — F(y)x0 are in M, so the product is in M. That is:

A((x - A(x)x0)( v - F(y)x0)) = 0

or

F(xy) - F(x)F(yx0) - F(y)F(xx0) + F(x)F(y)F(x2) = 0.

Using the fact that for any z, F(zx0) = F(z)F(xl), F(xy) - F(x)F(y)F(x¡) =

0.
Finally, the functional G(x) = F(xq)F(x) is seen from the above equation

to be a (nonzero) multiplicative linear functional-and therefore a continuous

linear functional-vanishing on M. Hence, M is a regular maximal ideal.

Q.E.D.
The results for algebras without identities are a special case of the natural

generalization of the codimension 1 theorem to subspaces of codimension 2.

To see this, let M be a subspace of codimension 1 in an algebra A without

identity. Note that if M has the property that each x in M belongs to a

regular maximal ideal, then in Ae, the algebra obtained by the standard

adjunction of an identity [9], M is of codimension 2 and has the property that
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each x in M belongs to two maximal ideals in Ae.

Thus, from the failure of the codimension 1 result in some Banach algebras

without identity, we see that the natural generalization of the codimension 1

result of [6] and [8] does not always hold for codimension 2.1 We give below

two examples of important algebras in which this generalization is true.

Theorem 2. Let S be a compact subset of the real line. If M is a closed

subspace of codimension n in C(S) with the property that each function in M

vanishes at at least n distinct points of S, then M is an ideal.

Proof. By translating S we may suppose that 0 is not in S.

The subspace sp(l, x,. .., x") is « + 1 dimensional so there is a nonzero

element q0 in sp(l, x, ..., x") n M. By hypothesis, q0 has at least n distinct

zeros in S, and so, to within a scalar, q0(x) = (x — sx)(x — s2) ■ ■ • (x — s„)

where the s, are distinct points of 5.

Suppose that / is a real-valued function in M. Then / + iq0 is in M and

therefore must vanish at n distinct points of S; since qQ vanishes only at

*,,..., s„,/must also vanish at these points.

The subspace sp(x*, xk+x, . . ., xk+n) intersects M in a nonzero poly-

nomial qk. By hypothesis qk must have « roots rx, . . ., rn in S, and also has

zero as a root of multiplicity k. To within a scalar, qk(x) = xk(x — rx) • • ■ (x

— r„). Because the roots r, are real, qk is real-valued, and by the argument of

the second paragraph {/-,, . . . , rn) = (s,.s„}.

The subspace M must therefore contain

B = [P(x)(x - sx)(x - s2) ■ ■ ■ (x - s„): F a polynomial}.

The set B is a selfadjoint subalgebra which separates all points other than the

s,. By the general Stone-Weierstrass Theorem, the closure d(B) of B is {/:

/(s,) = 0, 1 < i < «}; since dB QM and cod(cl B) = n, M = cl B.   Q.E.D.

Theorem 2 does not hold for an arbitrary C(S) algebra, S compact, for if 5

contains a point s0 not a Gs, then any element in any subspace M contained

in {/: /(s0) = 0} must have infinitely many zeros. Does Theorem 2 hold if

each point in S is a Gs? Does Theorem 2 hold for S the unit disk in R2?

There is an interesting approximation theory corollary to Theorem 2.

Corollary 3. Let P be a continuous linear projection on C[0, 1] with n

dimensional range. Suppose that P has thejollowing interpolation property:

(*) For each J there are distinct points s,, . . . , s„, depending on J, where PJ

interpolates toj, i.e., PJ(s) = J(s¡), 1 < i < n.

Then there are jixed points /,, . . . ,tn and Junctions /,, ...,/„ with

'Even an ideal of codimension 2 is not, in general, the intersection of two maximal ideals. It is

not hard to show that in a Banach algebra with identity, if / is a (closed) ideal of codimension 2,

then one of the two following disjoint possibilities holds:

(i) / is the intersection of two maximal ideals, or

(ii) / is the intersection of a maximal ideal and the kernel of a (continuous) point derivation at

that maximal ideal. Compare this with [1, Theorem 1.6.1, p. 66].
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Pf=^Atj)fj   and   f,(tj) = ô>

Proof. Let M be the kernel of I - P, cod M = dim R(P) = n. By Theo-

rem 2 there are points /„...,/„ with

{/:/(',)-/(O=0}= n%),
the intersection of the kernels N(e,) of the evaluation functional at t¡.

Write P(f) = 2xf(/)A„ where the xf are continuous linear functionals,

and sp(h, . . ., h„) = R(P). By a basic lemma [3, Lemma 10, p. 421], since

N(xr)DN(etj),       *,*-2<^.

Thus

Pf=Ilf(tj)(llaiJh¡) = ^f(tJ)fJ.

Since P is a projection onto its n dimensional range, the / are linearly

independent, and/ = Pf = *2.J¡(tf)fj implies thatJ5ty) = /#.   Q.E.D.
This result is false for the space Cjj[0, 1] of real-valued continuous func-

tions on [0, 1]; see [5] for related problems.

Theorem 4. Let M be a closed subspace of codimension n in LX(R). Suppose

that each f in M belongs to at least n regular maximal ideals. Then M is an

ideal.

Proof. Let A be a function in LX(R) with the properties:

(1) A is real valued and never zero,

(2) h(x)xJ = gj for some gy in Lx, I < j < n.

For example, consider A0(x) = exp( — x2/2). For this function, A0(x) = A0(x)

[7, p. 415] and g, can be found by applying the inverse Fourier transform to

the rapidly decreasing function h0(x)xJ (e.g., [7, p. 409]). For A satisfying (1)

and (2), let A be the subspace in Lx whose Fourier transform is the subspace

A(x)sp(l, x, . . . , x"). Because dim N = n + 1, N contains a nonzero element

to of M; by hypothesis, to within a scalar multiple w(x) = A(xX* —

sx) • • • (x — s„), with sx,..., sn distinct real numbers. If A, were another

function satisfying (1) and (2), there would be a nonzero element w, of M

with wx(x) = A,(x)(x - tx) ■ • ■ (x — t„), tx,..., t„ distinct real numbers.

Since w + iwx belongs to At", {/„..., f„} = {sx, . . ., sn). Let<70(x) = (x -

sx) • • • (x - sn) and let vv0 be the element of M having Fourier transform

Wo(x) = no(x)ao(x)- At this point we have seen that if A is a function

satisfying (1) and (2), then the element whose Fourier transform is A(x)^0(x)

belongs to M.

Since A0 * A0 satisfies (1) and (2), the element A0 * Wo, whose Fourier

transform is hl(x)q0(x), belongs to M.

Suppose that / in Lx has a real-valued Fourier transform / and set

b = Il/Il« + 1- Then A0*/+ bh0 is in L1 and has Fourier transform

A0(x)(/(x) + b) which is real valued and never zero, and (2) is satisfied as
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well. The function h0 * (h0 */ 4- bh0) also satisfies (1) and (2) and so, by the

argument above, the element whose Fourier transform is hg(x)(J(x) +

b)q0(x), namely (h0*J+ bh0) * w0, belongs to M. Consequently J * (h0* w¿)

belongs to M.

For any function g in L1, let g be the function satisfying g = g~. Since

(g + g) * ßo * wo) a"«1 Kg ~ §) * (h0 * Wo) belong to M, so does

g * (Aq » w0). Thus M contains the closed ideal J generated by h0 * w0. Since

the hull of J is the finite point set (s,,.. ., s„}, which is therefore a set of

spectral synthesis, J is the kernel of the hull of J [9, p. 86]: J = {g:

g(s¡) = 0, 1 < i < «}. Since cod J = cod M = n and M D J, M = J.

Q.E.D.
For what locally compact Abelian groups G does LX(G) have the property

of LX(R) described in Theorem 4? For G the unit circle, the character group

G is a subgroup of R, and the proof of Theorem 4 can be easily adapted for

this case. Does Theorem 4 hold for LX(R2)1
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