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SPECTRAL APPROXIMATIONS OF A NORMAL OPERATOR

RICHARD BOULDIN

Abstract. If A is a closed convex set in the complex plane then 9l(A; H)

denotes all the normal (bounded linear) operators on the fixed separable

Hilbert space H with spectrum contained in A. The fixed operator A has N

as an 9t(A; //>approximant provided N belongs to 9L(A; H) and the

operator norm \\A — N\\ equals pA(A), the distance from A to 9l(A; H).

With some hypothesis on A, this note proves that the dimension of the

convex set of all 9l(A; ir>approximants of normal operator A is (dim H^

where HQ is the orthogonal complement of ker(|^4 - F(A)\ — pA(A)) and

F(z) is the unique distaince minimizing retract of the complex plane onto A.

1. Introduction. If A is a closed convex set in the complex plane then 9l(A;

H) denotes all the normal (bounded linear) operators on the fixed separable

Hilbert space H with spectrum contained in A. The fixed operator A has N as

an 9l(A; /O-approximant provided N belongs to 9l(A; H) and the operator

norm \\A - N\\ equals pA(A), the distance from A to 9l(A; H). The set of all

9l(A; -íf")-approximants of A is denoted 9l(A; A). Provided A is normal and

A is a closed convex subset of some straight line in the complex plane, the

main theorem of this note constructs enough members of 91 (A; A) to

determine its dimension as a convex set (see [7, pp. 7-9]). Thus, the main

theorem generalizes previously known results for positive approximants [1,

Theorem 5.2] and selfadjoint approximants [2, Corollary 3.3]; it also answers

analogous questions for best approximation by selfadjoint and nonnegative

contractions. Halmos [4] suggests consideration of nonnegative contractions.

It appears that the proof of the main theorem has isolated the precise

ingredients for establishing such results. Perhaps greater clarity is a con-

sequence. To eliminate trivialities it is assumed, henceforth, that A contains at

least two points.

2. Preliminaries. Before the main theorem is proved, consideration is given

to the hypothesis which is responsible for limiting A. The appropriateness of

this hypothesis will be clear from the proof of the main theorem. If Q is some

orthogonal projection on H, then QT\QH is the compression of F to QH.

2.1. Lemma. If dim H > 3 then the following conditions on the closed convex

set A are equivalent:

(i) A is contained in some straight line in the complex plane,

(ii) 9l(A; H) is closed under the formation of compressions, and

(iii) 9l(A; H) is convex.
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Proof. Suppose A is not contained in some straight line. After a suitable

translation and expansion, one may assume that {1, — 1,/, —/} C A. Let

{e, f, g) be an orthonormal set and define A by

A = (-,e)e + <-,/>!/- <-,g>/g.

Clearly A is normal with either (1, /, -/} or (1, i, — i, 0} as its spectrum

a(A); hence, A belongs to 9l(A; H). Routine computations show that A

compressed to the subspace span{e + / + g, e — /} is not normal. Thus, (ii)

implies (i); since the converse is trivial, (ii) is equivalent to (i).

Continuing the above assumptions, define B and C by

B = <-, e)e - <•,/>/,       C = <•, e)if+ <•,/>.

Clearly B = B*, o(B) = {1, -1, 0}, C = - C*, a(C) = {/, -/, 0} and so B

and C belong to 9L(A; H). Since the convex combination \B + \C is not

normal, it follows that (iii) implies (i). Since the converse is trivial, (iii) is

equivalent to (i).

2.2. Corollary. If 9l(A; A) is closed under the formation of compressions

then for any Hilbert space A the dimension of 9l(A; A), as a convex set, is

(dim A)2.

Proof. If dim A is infinite then it is easy to see that the dimension of

9l(A; A) is infinite. Henceforth, dim A is assumed to be finite. Since A is a

subset of some straight Une in the plane, it is easy to see that it suffices to

assume A is a subset of the real numbers R.

First it is shown that dim 9l(A;  A) does not exceed (dim A)2.  If

{t?,.e„) is an orthonormal basis for A then consideration of matrices

shows that the following operators form a basis for 9l(A; A):

Rj = <•. ej)e,,       RkJ = <•, ek/ej + <•, e¡)ek,

Akj ■ <•> ek>iej - <•. ej)iek   forj,k -1.a

There are n operators like R¡, there are (n - l)n/2 like RkJ and (n - l)n/2

like Akj. Thus, the basis contains n2 operators.

Let a and b be real numbers with a < b. If it is shown that dim 9l([a, b];

A) is at least (dim A)2 then one can conclude that dim 9l([a, b]; K) equals

(dim A)2. Thus, it suffices to note that the following operators form a linearly

independent set in 9t([a, b]; A):

i>y = <-,e,>e,(a + ¿)/2,

Pkj = <•- ek}ej(b - a)/2 + <-, ej)ek(b - a)/2 + /(a + b)/2,

Qkj = <•> ek)iej(b - a)/2 - <•, ej)iek(b - a)/2 + I(a + b)/2.

There are n operators like Pj and n(n — 1) operators like either PkJ or QkJ.

The cases that a is — oo or b is oo are handled in a manner analogous to

the argument of the preceding paragraph.
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3. Main results. In the proof of the main theorem several subspaces will be

described in terms of the spectral measure of the normal operator A. Since

the spectral measure is difficult to construct in concrete cases, an alternative

description of the most important subspace is developed.

P. R. Halmos constructed an 9l(A; /i)-approximant for a normal operator

A in [5]. If F(z) is the unique distance minimizing retract of the complex

plane onto A then the Halmos 9l(A; //)-approximant of A is F(A). Since

F(z) is continuous, the operational calculus for A defines F(A) and shows the

distance pA(A) to be sup{dist(z, A): z G a(A)) where a(A) is the spectrum of

A and dist(z, A) is inf{|z — w\: w E A). The compact set

{z: dist(z, A) = pA(A) and |z| < \\A\\)

will be denoted by T.

3.1. Lemma. Let E() be the spectral measure for the normal operator A; let

pA(A), F(z) and T be described by the preceding paragraph. Then one has

kex(\A - F(A)\- pA(A)) = E(T)H.

Proof. Since pA(A)2 - \A - F(A)\2 is nonnegative, / belongs to the kernel

of that operator if and only if

<(pA(^)2-^-F(^)|2)/,/>=0

which is equivalent to

f{pA(A)2 -\z- F(z)\2)d(E(z)f,f) = 0. (»)

This last equation is equivalent to the statement that pA(A) = \z - F(z)\

almost everywhere with respect to the positive measure <£(•)/>/>• By the

definition of T, this holds exactly when z belongs to T and so (*) is equivalent

to

(E(r)f,f) = 0   or   E(r)f=0   or   f = E(T)f E(T)H.

This proves that E(T)H equals the kernel of (pA(A)2 - \A - F(A)\2). The

facts that \A - F(A)\ is a nonnegative operator, pA(A) is a nonnegative

number and

pA(A)2 -\A- F(A)\2 = (pA(A) -\A- F(A)\)(pA(A)+\A - F(A)\)

prove the lemma.

Recall that the set of all 9l(A; ¿/)-approximants of T is denoted 9l(A; T).

3.2. Lemma. Let A be a normal operator and let 9l(A; H) be closed under

formation of compressions. If N belongs to 9l(A; A) then E(T)H reduces N to

F(A)\E(T)H.

Proof. The following computation shows that E(T)N\E(T)H belongs to

9l(A; A\E(T)H):
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\\A\E(T)H - E(T)N\E(T)H\\ = \\E(T)(A - N)E(T)\\

<\\A-N\\ = pA(A)

and

pA(A\E(T)H) = sup{dist(z, A): z E o(A\E(T)H)}

= sup{dist(z, A): z E a(A) n T) = pA(A).

In the trivial case that E(T)H = (0} the desired conclusion is trivial.

By [3, Theorem 4] the unique 9l(A; //>approximant of A\E(T)H is

F(A\E(T)H) = F(A)\E(T)H. Consequently, relative to the decomposition

H = E(T)H © E(F)H,

N has a matrix of the form

F(A)\E(T)H    E2\

Ex E3J-

For any unit vector/ E E(T)H one has

\\(A-N)ff =\\(A - F(A))ff+\\Exff
and

\\(A - F(A))f]\ > inf{|z|: z E o(¿ - F(A)\E(Y)H)}

= inf(|z - A(z)|: z E a(,4) n T} = pA(A).

This implies that ||£,/||2 = 0 and so Ex = 0. The same argument applied to

(A — N)* shows that E2 = 0 and the desired conclusion follows.

3.3. Lemma. Let A be a normal operator and let H0 be the orthogonal

complement of ker(\A — F(A)\ — pA(A)). If 9l(A; H) is closed under the

formation of compressions then the real dimension of 9l(A; A), as a convex set,

does not exceed (dim H0)2.

Proof. From Lemma 3.1 it follows that H0 = E(TC)H where E(-) is the

spectral measure for A. From Lemma 3.2 it follows that each member of

9L(A; A) belongs to the set

{F(A)\(H0)± ®R:RE %(A; H0)};

this set has the same dimension as 9l(A; HQ) and the dimension of that is

given by Lemma 2.2.

3.4. Theorem. Let A be a normal operator and let HQ be the orthogonal

complement of ker(|^4 — F(A)\ — pA(A)). If A is a closed convex set such that

9l(A; H) is closed under formation of compressions then the real dimension of

the convex set ?fl(A; A) equals (dim H0)2.

Proof. In view of Lemma 3.3 it suffices to show that dim 91 (A; A) is

infinite when dim H0 is infinite and that

dim 9l(A; A) > (dim H0)2 (*)
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holds when dim H0 is finite. Since the last inequality is easier, it is proved

first.

If dim #0 = 0 then H = E(T)H or o(A) c T it follows from [3, Theorem 4]

that F(A) is the unique 9l(A; 7/)-approximant of A. Assume dim H0 is a

positive integer and note that a(A\E(Tc)H) consists of a finite collection of

eigenvalues. Consequently,

Tj = sup{dist(z, A): z G a(A\E(r)H))

is less than pA(A). For example, assume that 0 G A. Let An be a closed

convex subset of A such that 0 G Aq and if X is a nonzero extreme point of

Aq, that is X E Ext A^, then there is some p E Ext A with |X — p\ = 8 where

25 = min{pA(yl) - tj, |z|/3: z G Ext A, z # 0}.

Let N be any operator from 91^; H) which is reduced to zero by E(T)H

and ||A71| < 8. Let G(z) be the distance minimizing retract onto A^. The

following computation shows that

T = (N + F(A))\E(T)H © (N + G(A))\E(TC)H

is in 9l(A; A).

\\A - T\\ = max{\\(A - F(A))\E(T)H\\, \\(A - G(A) - N)\E(r)H\\]

= max{pA(A), \\(A - G(A))\E(r)H\\ + \\N\\} = pA(A).

Note that the spectral mapping theorem shows that the spectral radius of

(A — G(A))\E(TC)H does not exceed n + 8 and since this operator is normal,

its spectral radius equals its norm. This proves that {R — (F(A)\H{jL ©

G(A)\H0); R G 9l(A; A)} contains a copy of ^IfAn, Hq) and inequality (»)

follows from Lemma 2.2.

If dim H0 is infinite and A\H0 has infinitely many eigenvalues (counted

according to multiplicity) then the method of the preceding paragraph shows

that dim %(A; A) is infinite.

The remaining case that dim H0 is infinite and A \H0 has only finitely many

eigenvalues (counted by multiplicity) is the most difficult. A well-known

measure theory technique for the complex plane is required, and the version

presented in [6, pp. 51-54] will be used. For the reader's convenience the key

ideas of that technique are appropriately reformulated. If w is a complex

number and 8 is a positive number then the set (z: a < re z < a + 5,

ß < im z < ß + 8} is the 5-box with corner at a + iß, where a and ß axe

real. For n = 1,2,. . . let Sn be the set of all (2-")-boxes with corners at

x + iy where x and v are both integral multiples of 2~". Let Tn be {C G Sn:

E(C)¥=0} where £(•) is the spectral measure for A and let 9" be

\J{TX,T2,. ..). Take a sequence [DX,D2,.. . } from ty such that i >/

implies D¡ c Dj and Z>, =£ Dj. It is straightforward to see that

(~\{DX,D2, . . .} consists of exactly one complex number, say w.

Because the orthogonal complement in E(TC)H of the span of the eigen-

spaces corresponding to eigenvalues of N off T must be infinite dimensional,
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one can assume that A has no eigenvalues off T. Thus, with no loss of

generality, it is assumed that E(-) has no point masses in Ve. If

St = {z: dist(z, A) < pA(A)(l - l/k)}

then for k sufficiently large E(§k) is not zero. Fix such a choice of k. If D is

some box from Sk n Tn then for arbitrarily large i there are at least two

boxes in Tn+i, say Fx and F2, such that D D Fx u F2. Otherwise, one would

obtain a finite collection of boxes {Ex,..., E¡) with the property that

associated   with   each   E}   is   a   strictly   decreasing   sequence   of   boxes

{Ej<2, Ej3,...) such that E(EJ) = E(Ej;2) = E(Ej3) =_If Wj is defined

by iwj) = H {^, £}¿, • • - } then vv, is a point mass for £(•) and one has a

contradiction.

Now it is easy to construct an infinite collection of Borel sets 91L =

{MX,M2, .. . } such that E(Mj) J= 0 and the closure of Mp denoted Mf, does

not intersect T. Choose Dx from <¡>k n Tn(X); choose n(2) > n(l) such that two

boxes of r„(2) are contained in Dx and let D2 be one of the two boxes. Choose

n(3) > n(2) such that two boxes of Tn(3) are contained in D2 and let D3 be one

of the two boxes. Continue this by induction. Define A/, to be Dj\DJ+x and

note that 911 = {MX,M2,... } is the desired collection.

Let TL = sup{dist(z, A): z E Mj) and note that ijy < pA(A). Choose p, E A

such that pj £ F(Mj~) and sup{dist(z, pf): z E Mj) does not exceed pA(A).

Define A, to be pjE(Mj) + F(A)E(Mf). It is routine to verify that A^ is an

9l(A; ¿O-approximant of A and that {A, - F(A), N2 - F(A),. . . } is a

linearly independent set. Thus, dim 9l(A; A) is infinite and the theorem is

proved.
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