# QUOTIENTS OF $c_{0}$ ARE ALMOST ISOMETRIC TO SUBSPACES OF $\boldsymbol{c}_{0}$ 

DALE E. ALSPACH ${ }^{1}$


#### Abstract

It is shown that for every $\varepsilon>0$ and quotient space $X$ of $c_{0}$ there is a subspace $Y$ of $c_{0}$ such that the Banach-Mazur distance $d(X, Y)$ is less than $1+\varepsilon$. This improves a result of Johnson and Zippin.


0. Introduction. Johnson and Zippin [2] have shown that a quotient space of $c_{0}$ is isomorphic to a subspace of $c_{0}$. Here we strengthen this result by showing that a quotient of $c_{0}$ is almost isometric to a subspace of $c_{0}$, i.e., if $X$ is a quotient of $c_{0}$ and $\varepsilon>0$, then there is an isomorphism $T$ from $X$ into $c_{0}$ such that $\|T\|\left\|T^{-1}\right\|<1+\varepsilon$.
We will use standard Banach space notation as may be found in the book of Lindenstrauss and Tzafriri [3].
We wish to thank Y. Benyamini for suggesting several simplifications of our arguments.

## 1. Proof of the result.

Theorem. Let $X$ be a quotient of $c_{0}$; then, for every $\varepsilon>0$, there is a subspace $Y$ of $c_{0}$ such that

$$
d(X, Y)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T: X \rightarrow Y \text { is an isomorphism }\right\}<1+\varepsilon .
$$

Proof. We will construct a sequence $\left\{x_{i}^{\prime}: i \in \mathbf{N}\right\}$ in $B_{X^{*}}$ such that $w^{*} \lim x_{i}^{\prime}=0$ and

$$
\sup \left\{\left|x_{i}^{\prime}(z)\right|: i \in \mathbf{N}\right\} \geqslant(1+\varepsilon)^{-1}\|z\|
$$

for all $z \in X$. Once this is accomplished, the evaluation map $E: X \rightarrow c_{0}$, defined by $(E z)(i)=x_{i}^{\prime}(z), i \in \mathbf{N}$, gives the required isomorphism.

First we will choose a sequence $\left\{x_{i}: i \in \mathbf{N}\right\}$ such that

$$
\sup \left\{\left|x_{i}(z)\right|: i \in \mathbf{N}\right\} \geqslant(1-\varepsilon / 24)\|z\|,
$$

for all $z \in X$, and then show that a slight modification of this sequence converges $w^{*}$ to zero. Let $P_{j}$ be the natural projection onto the span of the first $j$ unit vectors of the usual basis of $l_{1}$ and let $\tau=\varepsilon / 16$ and $\delta=2 \tau^{2} / 3$. Suppose we have chosen integers $n(1), n(2), \ldots, n(i-1)$ and unit vectors $x_{1}, x_{2}, \ldots, x_{n(i-1)}$ in $X^{*}$ such that

[^0]$$
\left\|P_{j} x_{l}\right\| \geqslant 1-\delta / 4 \quad \text { if } l \leqslant n(j)
$$
and such that if $x \in B_{X^{*}}$ and $\left\|P_{j} x\right\| \geqslant 1-\delta / 4$ either
(1) there is an element $z=\sum_{i=1}^{n(j-1)} \lambda_{i} x_{i}, \lambda_{i} \geqslant 0$, such that $\sum_{i=1}^{n(j-1)} \lambda_{i} \geqslant \tau$ and
$$
\|x-z\|+\sum_{i=1}^{n(j-1)} \lambda_{i}<(1+\delta)\|x\|
$$
or
(2) there is an element $x_{l}, n(j-1)<l \leqslant n(j)$, such that for some $\lambda$, $1>\lambda>1-\delta / 4$,
$$
\left\|x-\lambda x_{l}\right\|+\lambda \leqslant(1+\delta)\|x\|
$$

We choose $n(i)$ and unit vectors $x_{n(i-1)+1}, \ldots, x_{n(i)}$ so that $\left\{\lambda_{l} x_{l}: n(i-1)\right.$ $<l \leqslant n(i)\}$ is a finite $5 \delta / 8$ net in

$$
A_{i}=\left\{x: x \in B_{X^{*}},\left\|P_{i} x\right\|>1-\delta / 4, \text { and (1) is not satisfied }\right\},
$$

for some sequence of nonnegative real numbers $\left\{\lambda_{l}: n(i-1)<l<n(i)\right\}$.
Now if $x \in B_{X^{*}},\left\|P_{i} x\right\| \geqslant 1-\delta / 4$, and (1) is not satisfied then there is an index $l, n(i-1)<l \leqslant n(i)$, such that $\left\|x-\lambda_{l} x_{l}\right\|<5 \delta / 8$. Thus

$$
\left\|x-\lambda_{l} x_{l}\right\|+\lambda_{l}<5 \delta / 8+1 \leqslant(1+\delta)\|x\| \quad \text { if } \delta \leqslant \frac{1}{2}
$$

The above procedure inductively defines our sequence $\left\{x_{i}: i \in \mathbf{N}\right\}$. Our next task is to verify that

$$
\sup \left\{\left|x_{i}(z)\right|: i \in \mathbf{N}\right\} \geqslant(1-\varepsilon / 24)\|z\|
$$

for all $z \in X$. This is equivalent to showing that

$$
\overline{\operatorname{co}}\left(\left\{ \pm x_{i}: i \in \mathbf{N}\right\} \cup\{0\}\right) \supset(1-\varepsilon / 24) B_{X} *
$$

It follows from (1) and (2) that if $x \in B_{X^{*}}$ and $\left\|P_{i} x\right\|>1-\delta / 4$ then there is an element $z=\sum_{i=1}^{n(i)} \lambda_{i} x_{i}, \lambda_{i} \geqslant 0$, such that

$$
\|x-z\|+\sum_{i=1}^{n(i)} \lambda_{i}<(1+\delta)\|x\| \quad \text { and } \quad \sum_{i=1}^{n(i)} \lambda_{i}>\tau
$$

Thus

$$
\|x-z\|<(1+\delta)\|x\|-\tau<(1+\delta-\tau)\|x\| .
$$

Because $\tau>\delta$, we can construct a series $\sum_{i=1}^{\infty} \beta_{i} x_{i}$, which converges to $x$ in norm by imitating the standard proof of the open mapping theorem (e.g., [1, p. 56]). Consequently there exists a constant $K$ such that

$$
|x|=\inf \left\{\sum_{i=1}^{\infty} \beta_{i}: \sum_{i=1}^{\infty} \beta_{i} x_{i}=x, \beta_{i} \geqslant 0\right\} \leqslant K\|x\|
$$

for all $x \in X^{*}$.
We claim that we can choose $K \leqslant \tau(\tau-\delta)^{-1}=24 /(24-\varepsilon)$ and that
(3)

$$
|x|<\tau(\tau-\delta)^{-1}\|x\| .
$$

Suppose $\rho>0, K$ is minimal, $|x|>K-\rho$, and $\|x\|=1$. There is an integer $j$ such that $\left\|P_{j} x\right\|>1-\delta / 4$ and thus by (1) or (2) there is an element $z=\sum_{i=1}^{n(j)} \gamma_{i} x_{i}, \gamma_{i} \geq 0$, such that

$$
\|x-z\|+\sum_{i=1}^{n(j)} \gamma_{i}<1+\delta \quad \text { and } \quad \sum_{i=1}^{n(j)} \gamma_{i}>\tau
$$

Consequently

$$
\begin{aligned}
|x|+(K-1) \tau & <|x-z|+|z|+(K-1) \sum_{i=1}^{n(j)} \gamma_{i} \\
& <K\|x-z\|+\sum_{i=1}^{n(j)} \gamma_{i}<K(1+\delta) .
\end{aligned}
$$

Hence $K-\rho+(K-1) \tau<K(1+\delta)$, for all $\rho>0$, and $K<\tau(\tau-\delta)^{-1}$, as claimed. If $K<\tau(\tau-\delta)^{-1}$, (3) is obvious. If $K=\tau(\tau-\delta)^{-1}$, replacing $K$ by $\tau(\tau-\delta)^{-1}$ above yields

$$
|x|+\left(\tau(\tau-\delta)^{-1}-1\right) \tau<\tau(\tau-\delta)^{-1}(1+\delta)
$$

or $|x|<\tau(\tau-\delta)^{-1}$, proving (3).
Our final task is to show that there are elements $\left\{w_{i}: i \in N\right\} \subset(\varepsilon / 16) B_{X^{*}}$ such that $w^{*} \lim \left(x_{i}-w_{i}\right)=0$. Then we can let $x_{i}^{\prime}=x_{i}-w_{i}$ and

$$
\begin{aligned}
\sup \left\{\left|x_{i}^{\prime}(z)\right|: i \in \mathbf{N}\right\} & \geqslant \sup \left\{\left|x_{i}(z)\right|: i \in \mathbf{N}\right\}-(\varepsilon / 16)\|z\| \\
& \geqslant(1-\varepsilon / 24)\|z\|-(\varepsilon / 16)\|z\| \\
& =(1-5 \varepsilon / 48)\|z\|>(1+\varepsilon)^{-1}\|z\|
\end{aligned}
$$

(if $\varepsilon<1$ ).
Let $x$ be a $w^{*}$ cluster point of $\left\{x_{i}: i \in \mathbf{N}\right\}$ and for notational convenience assume that $w^{*} \lim x_{i}=x$. We claim that $\|x\|<\varepsilon / 16$. From (3) it follows that there is a sequence $\left\{\lambda_{i}: i \in N\right\}$ of nonnegative real numbers such that

$$
x=\sum_{i=1}^{\infty} \lambda_{i} x_{i} \text { and }\|x\|<\sum_{i=1}^{\infty} \lambda_{i}<\tau(\tau-\delta)^{-1}\|x\|
$$

Suppose $\|x\|>\varepsilon / 16$. Let

$$
a=\left(\sum_{i=1}^{\infty} \lambda_{i}\right)^{-1} \varepsilon / 16<1
$$

and consider

$$
\left\|x_{j}-a x\right\|+a \sum_{i=1}^{\infty} \lambda_{i}, \quad j=1,2, \ldots
$$

For any $\rho>0$ there is a sufficiently large integer $j_{0}$ such that for all $j>j_{0}$,

$$
\left\|x_{j}-a x\right\|<\left\|x_{j}\right\|-a\|x\|+\rho
$$

Thus, if $\rho<\delta-\left(1-\|x\|\left(\Sigma \lambda_{i}\right)^{-1}\right) \varepsilon / 16$,

$$
\begin{aligned}
\left\|x_{j}-a x\right\|+a \sum_{i=1}^{\infty} \lambda_{i} & <\left\|x_{j}\right\|-a\|x\|+\rho+a \sum_{i=1}^{\infty} \lambda_{i} \\
& <\left\|x_{j}\right\|-\left(\|x\|\left(\sum_{i=1}^{\infty} \lambda_{i}\right)^{-1}-1\right) \frac{\varepsilon}{16}+\rho \\
& <\left\|x_{j}\right\|+\delta=(1+\delta)\left\|x_{j}\right\|
\end{aligned}
$$

for all large $j$. Clearly we can replace $x$ by some approximate $\sum_{i=1}^{i_{0}} \lambda_{i} x_{i}$ to get that, for sufficiently large $j$,

$$
\left\|x_{j}-a^{\prime} \sum_{i=1}^{i_{0}} \lambda_{i} x_{i}\right\|+a^{\prime} \sum_{i=1}^{i_{0}} \lambda_{i}<(1+\delta)\left\|x_{j}\right\|
$$

where

$$
a^{\prime}=\left(\sum_{i=1}^{i_{0}} \lambda_{i}\right)^{-1} \frac{\varepsilon}{16}=\left(\sum_{i=1}^{i_{0}} \lambda_{i}\right)^{-1} \tau
$$

This contradicts the fact that $x_{j} \in A_{m}$ if $i_{0}<n(m-1)<j<n(m)$, and therefore $\|x\|<\varepsilon / 16$.

For each $i$ let $w_{i}$ be a $w^{*}$ cluster point of $\left\{x_{i}: i \in \mathbf{N}\right\}$ such that $\bar{d}\left(x_{i}, w_{i}\right)<$ $i^{-1}+\inf \left\{\bar{d}\left(x_{i}, w\right): w\right.$ is a $w^{*}$ cluster point of $\left.\left\{x_{i}: i \in N\right\}\right\}$ where $\bar{d}($,$) is a$ translation invariant metric compatible with the $w^{*}$ topology on $B_{X^{*}}$. Clearly $w^{*} \lim \left(x_{i}-w_{i}\right)=0$, completing the proof.

## References

1. N. Dunford and J. T. Schwarz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958.
2. W. B. Johnson and M. Zippin, Subspaces of $\left(\Sigma G_{n}\right)_{\zeta}$ and $\left(\Sigma G_{n}\right)_{c_{0}}$ Israel J. Math. 17 (1974), 50-55.
3. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in Math., vol. 338, Springer-Verlag, Berlin and New York, 1973.

Department of Mathematics, Massachusetts Institute of Tbchnology, Cambridge, Massachusetts 02139


[^0]:    Received by the editors September 12, 1978.
    AMS (MOS) subject classifications (1970). Primary 46A45; Secondary 46E15.
    Key words and phrases. Quotient space, almost isometric.
    ${ }^{1}$ Supported in part by NSF-MCS 7610613.

