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QUOTIENTS OF c0 ARE ALMOST ISOMETRIC

TO SUBSPACES OF c„

DALE E. ALSPACH1

Abstract. It is shown that for every e > 0 and quotient space X of c0 there

is a subspace Y of c0 such that the Banach-Mazur distance d(X, Y) is less

than 1 + e. This improves a result of Johnson and Zippin.

0. Introduction. Johnson and Zippin [2] have shown that a quotient space of

c0 is isomorphic to a subspace of c0. Here we strengthen this result by

showing that a quotient of c0 is almost isometric to a subspace of c0, i.e., if X

is a quotient of c0 and e > 0, then there is an isomorphism T from X into c0

such that || T|| ||7'-1|| < 1 + e.

We will use standard Banach space notation as may be found in the book

of Lindenstrauss and Tzafriri [3].

We wish to thank Y. Benyamini for suggesting several simplifications of

our arguments.

1. Proof of the result.

Theorem. Let X be a quotient of c0; then, for every e > 0, there is a subspace

Y of c0 such that

d(X, Y) = inf{||r|| \\T-X\\:T:X^> Y is an isomorphism) < 1 + e.

Proof. We will construct a sequence (x,-: i G N} in Bx, such that

iv* lim x'¡ = 0 and

sup{|x;(z)|:iGN}>(l + e)-1||z||

for all z G X. Once this is accomplished, the evaluation map E: X -» Cq,

defined by (Ez)(i) = x,'(z), i G N, gives the required isomorphism.

First we will choose a sequence (x,: /' G N) such that

sup{|x,.(z)|:iGN}>(l-e/24)||z||,

for all z G X, and then show that a slight modification of this sequence

converges w* to zero. Let Pj be the natural projection onto the span of the

first/ unit vectors of the usual basis of /, and let t = e/16 and 8 = 2t2/3.

Suppose we have chosen integers n(l), n(2),. . . , n(i — 1) and unit vectors

x„ x2, . . . , x^d in X* such that
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\\PjX,\\> l - 8/4       iîKn(j)

and such that if x E Bx, and ||P,x|| > 1 - 5/4 either

(1) there is an element z = 272f%*i> \ > 0. such that 2"2T°\ > * and

"0-1)

II* -4+  2 \<(i + s)||x||
I— 1

or

(2) there is an element x,, «(/ — 1) < / < n(J), such that for some X,

1 > A > 1 - 8/4,

||x - ax,|| + X < (1 + 5)||x||.

We choose n(i) and unit vectors xn(l_1)+1,. . ., x„(/) so that {X,x,: n(i — 1)

< / < /!(/)} is a finite 55/8 net in

A¡ = {x: x E Bx„ \\P¡x\\ > 1 - 5/4, and (1) is not satisfied},

for some sequence of nonnegative real numbers {X,: n(i — 1) < / < «(/)}.

Now if x E Bx., \\P¡x\\ > 1 — 5/4, and (1) is not satisfied then there is an

index /, n(i - 1) < / < n(i), such that ||x - X,x,\\ < 55/8. Thus

||x - X,x,\\ + X, < 55/8 + 1 < (1 + 5)||x||       if 5 <±.

The above procedure inductively defines our sequence {x,: i E N}. Our

next task is to verify that

sup{|x,(z)|: i E N} > (1 - e/24)||z||

for all z E X. This is equivalent to showing that

cö({±x,.: i G N} u {0}) D (1 - e/24)^..

It follows from (1) and (2) that if x E Bx. and \\P¡x\\ > 1 - 5/4 then there

is an element z = 5$?i\*<, \ > 0, such that

«(') «(0

||x - z|| + 2 \ < (1 + * )||*||    and     2 \ > t.
i-l /-I

Thus

||x-z||<(H-Ô)||x||-t<(1 + 5-t)||x||.

Because t > 5, we can construct a series 2Jllr5,x,, which converges to x in

norm by imitating the standard proof of the open mapping theorem (e.g.,

[1, p. 56]). Consequently there exists a constant A such that

|x| = inf j I ßt:  f ß,xt = x, ß, > 0 j < A||x||,

for all x E X*.

We claim that we can choose A < t(t — 5)_1 = 24/(24 — e) and that

(3)

IX^TÎT-ÔT'IIXII.
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Suppose p > 0, K is minimal, |x| > K — p, and ||x|| = 1. There is an integer/

such that \\PjX\\ > 1 - 8/4 and thus by (1) or (2) there is an element

z - 2^y,x,., y, > 0, such that

»CO «CO

II*-*||+ 2 Y,< 1 + «   and     2 Y, >t.
/-i i-i

Consequently

»CO
|x|+(A-- 1)t <|x-z|+|z|+(A:- 1)2 y,.

I-I

»CO
< A-||x - z|| + 2 Y, <*(! + «)•

/-i

Hence AT - p + (AT - 1)t < #(1 + 5), for all p > 0, and K < t(t - 8)~x, as

claimed. If K < t(t - 8)~x, (3) is obvious. If K = t(t - 8)~\ replacing K

by t(t — fi)_1 above yields

|x|+(t(t- 5)"' - 1)t<t(t- 5)"'(1 + 8)

or |x| < t(t - 8)~x, proving (3).

Our final task is to show that there are elements [w¡: i G N} c (e/l6)Bx.

such that w* lim(x, — w¡) = 0. Then we can let x'¡ = x, — w¡ and

sup{|x/(z)|: i G N} > sup{|x,(z)|: i G N} - (e/16)||z||

>(l-£/24)||z||-(e/16)||z||

= (l-5e/48)||z||>(l + e)-1||z||

(if e < 1).

Let x be a w* cluster point of {x,: i G N} and for notational convenience

assume that w* lim x, = x. We claim that ||x|| < e/16. From (3) it follows

that there is a sequence (\: /' G N) of nonnegative real numbers such that

x = 2 \*i   and    ||x|| < f \- < t(t - « )_1||4-
i = i / — i

Suppose ||x|| > e/16. Let

«-(.2\)    e/16< 1,

and consider

oo

\Xj - ax|| + a 2 K      j = 1» 2,
i = i

For any p > 0 there is a sufficiently large integer jQ such that for ally >j0,

||x,.-ax||<||x,||-a||x|| + p.



288 D. E. ALSPACH

Thus, if p < 5 - (1 - I^HíSa,)-1)«/!©,

\\Xj - ax\\ + a f \ < ||x,|| - a||x|| + p + a f \.

^-M,!*)-1-1)* +p
<||x,||+ô = (l + ô)||x,||,

for all large/. Clearly we can replace x by some approximate 2;0_i\*/ to get

that, for sufficiently large/,

xy-a'Í\x,|+a'¿A1.<(l + 5)||x7.||
i—i /-i

where

-i'-(i*)"*-U4T.

This contradicts the fact that x}, E Am if /„ < n(m — 1) </ < n(m), and

therefore ||x|| < e/16.

For each i let w, be a w* cluster point of (x,: /' E N} such that d(x¡, w¡) <

i~x + inf{aXx„ w): w is a w* cluster point of {x,: i E N}} where d( , ) is a

translation invariant metric compatible with the w* topology on Bx,. Clearly

to* lim(x, - w¡) = 0, completing the proof.
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