QUOTIENTS OF c_0 ARE ALMOST ISOMETRIC TO SUBSPACES OF c_0

DALE E. ALSPACH¹

ABSTRACT. It is shown that for every e > 0 and quotient space X of c_0 there is a subspace Y of c_0 such that the Banach-Mazur distance d(X, Y) is less than 1 + e. This improves a result of Johnson and Zippin.

0. Introduction. Johnson and Zippin [2] have shown that a quotient space of c_0 is isomorphic to a subspace of c_0 . Here we strengthen this result by showing that a quotient of c_0 is almost isometric to a subspace of c_0 , i.e., if X is a quotient of c_0 and $\varepsilon > 0$, then there is an isomorphism T from X into c_0 such that $||T|| ||T^{-1}|| \le 1 + \varepsilon$.

We will use standard Banach space notation as may be found in the book of Lindenstrauss and Tzafriri [3].

We wish to thank Y. Benyamini for suggesting several simplifications of our arguments.

1. Proof of the result.

THEOREM. Let X be a quotient of c_0 ; then, for every $\varepsilon > 0$, there is a subspace Y of c_0 such that

$$d(X, Y) = \inf\{\|T\| \|T^{-1}\| : T: X \to Y \text{ is an isomorphism}\} \le 1 + \varepsilon.$$

PROOF. We will construct a sequence $\{x_i': i \in \mathbb{N}\}$ in B_{X^*} such that $w^* \lim x_i' = 0$ and

$$\sup\{|x_i'(z)| \colon i \in \mathbb{N}\} > (1 + \varepsilon)^{-1} ||z||$$

for all $z \in X$. Once this is accomplished, the evaluation map $E: X \to c_0$, defined by $(Ez)(i) = x_i'(z)$, $i \in \mathbb{N}$, gives the required isomorphism.

First we will choose a sequence $\{x_i: i \in \mathbb{N}\}$ such that

$$\sup\{|x_i(z)| : i \in \mathbb{N}\} > (1 - \varepsilon/24) ||z||,$$

for all $z \in X$, and then show that a slight modification of this sequence converges w^* to zero. Let P_j be the natural projection onto the span of the first j unit vectors of the usual basis of l_1 and let $\tau = \varepsilon/16$ and $\delta = 2\tau^2/3$. Suppose we have chosen integers $n(1), n(2), \ldots, n(i-1)$ and unit vectors $x_1, x_2, \ldots, x_{n(i-1)}$ in X^* such that

Received by the editors September 12, 1978.

AMS (MOS) subject classifications (1970). Primary 46A45; Secondary 46E15.

Key words and phrases. Quotient space, almost isometric.

¹Supported in part by NSF-MCS 7610613.

$$||P_i x_i|| > 1 - \delta/4$$
 if $l < n(j)$

and such that if $x \in B_{X^*}$ and $||P_j x|| > 1 - \delta/4$ either

(1) there is an element $z = \sum_{i=1}^{n(j-1)} \lambda_i x_i, \lambda_i > 0$, such that $\sum_{i=1}^{n(j-1)} \lambda_i > \tau$ and

$$||x-z|| + \sum_{i=1}^{n(j-1)} \lambda_i < (1+\delta)||x||$$

or

(2) there is an element x_l , $n(j-1) < l \le n(j)$, such that for some λ , $1 > \lambda > 1 - \delta/4,$

$$||x - \lambda x_i|| + \lambda \le (1 + \delta)||x||.$$

We choose n(i) and unit vectors $x_{n(i-1)+1}, \ldots, x_{n(i)}$ so that $\{\lambda_l x_l : n(i-1)\}$ $\langle l \leq n(i) \rangle$ is a finite $5\delta/8$ net in

$$A_i = \{x : x \in B_{X^*}, ||P_i x|| > 1 - \delta/4, \text{ and } (1) \text{ is not satisfied} \},$$

for some sequence of nonnegative real numbers $\{\lambda_i : n(i-1) < l \le n(i)\}$.

Now if $x \in B_{X^*}$, $||P_i x|| > 1 - \delta/4$, and (1) is not satisfied then there is an index l, $n(i-1) < l \le n(i)$, such that $||x - \lambda_l x_l|| < 5\delta/8$. Thus

$$||x - \lambda_l x_l|| + \lambda_l < 5\delta/8 + 1 \le (1 + \delta)||x|| \quad \text{if } \delta \le \frac{1}{2}.$$

The above procedure inductively defines our sequence $\{x_i: i \in \mathbb{N}\}$. Our next task is to verify that

$$\sup\{|x_i(z)| : i \in \mathbb{N}\} > (1 - \varepsilon/24) ||z||$$

for all $z \in X$. This is equivalent to showing that

$$\overline{\operatorname{co}}\left(\left\{\pm x_i: i \in \mathbb{N}\right\} \cup \left\{0\right\}\right) \supset \left(1 - \varepsilon/24\right) B_{X^{\bullet}}.$$

It follows from (1) and (2) that if $x \in B_{X^*}$ and $||P_i x|| > 1 - \delta/4$ then there is an element $z = \sum_{i=1}^{n(i)} \lambda_i x_i, \lambda_i > 0$, such that

$$||x - z|| + \sum_{i=1}^{n(i)} \lambda_i < (1 + \delta) ||x||$$
 and $\sum_{i=1}^{n(i)} \lambda_i > \tau$.

Thus

$$||x - z|| < (1 + \delta)||x|| - \tau \le (1 + \delta - \tau)||x||.$$

Because $\tau > \delta$, we can construct a series $\sum_{i=1}^{\infty} \beta_i x_i$, which converges to x in norm by imitating the standard proof of the open mapping theorem (e.g., [1, p. 56]). Consequently there exists a constant K such that

$$|x| = \inf \left\{ \sum_{i=1}^{\infty} \beta_i : \sum_{i=1}^{\infty} \beta_i x_i = x, \beta_i \geqslant 0 \right\} \leqslant K ||x||,$$

for all $x \in X^*$.

We claim that we can choose $K \le \tau(\tau - \delta)^{-1} = 24/(24 - \varepsilon)$ and that (3)

$$|x|<\tau(\tau-\delta)^{-1}||x||.$$

Suppose $\rho > 0$, K is minimal, $|x| > K - \rho$, and ||x|| = 1. There is an integer j such that $||P_j x|| > 1 - \delta/4$ and thus by (1) or (2) there is an element $z = \sum_{i=1}^{n(j)} \gamma_i x_i$, $\gamma_i > 0$, such that

$$||x - z|| + \sum_{i=1}^{n(j)} \gamma_i < 1 + \delta$$
 and $\sum_{i=1}^{n(j)} \gamma_i > \tau$.

Consequently

$$|x| + (K-1)\tau \le |x-z| + |z| + (K-1)\sum_{i=1}^{n(j)} \gamma_i$$

$$\le K||x-z|| + \sum_{i=1}^{n(j)} \gamma_i < K(1+\delta).$$

Hence $K - \rho + (K - 1)\tau < K(1 + \delta)$, for all $\rho > 0$, and $K < \tau(\tau - \delta)^{-1}$, as claimed. If $K < \tau(\tau - \delta)^{-1}$, (3) is obvious. If $K = \tau(\tau - \delta)^{-1}$, replacing K by $\tau(\tau - \delta)^{-1}$ above yields

$$|x| + (\tau(\tau - \delta)^{-1} - 1)\tau < \tau(\tau - \delta)^{-1}(1 + \delta)$$

or $|x| < \tau(\tau - \delta)^{-1}$, proving (3).

Our final task is to show that there are elements $\{w_i: i \in \mathbb{N}\} \subset (\varepsilon/16)B_{X^{\bullet}}$ such that $w^* \lim(x_i - w_i) = 0$. Then we can let $x_i' = x_i - w_i$ and

$$\sup\{|x_i'(z)|: i \in \mathbb{N}\} > \sup\{|x_i(z)|: i \in \mathbb{N}\} - (\varepsilon/16)\|z\|$$
$$> (1 - \varepsilon/24)\|z\| - (\varepsilon/16)\|z\|$$
$$= (1 - 5\varepsilon/48)\|z\| > (1 + \varepsilon)^{-1}\|z\|$$

(if $\varepsilon < 1$).

Let x be a w^* cluster point of $\{x_i: i \in \mathbb{N}\}$ and for notational convenience assume that $w^* \lim x_i = x$. We claim that $||x|| \le \varepsilon/16$. From (3) it follows that there is a sequence $\{\lambda_i: i \in \mathbb{N}\}$ of nonnegative real numbers such that

$$x = \sum_{i=1}^{\infty} \lambda_i x_i \quad \text{and} \quad \|x\| \le \sum_{i=1}^{\infty} \lambda_i < \tau (\tau - \delta)^{-1} \|x\|.$$

Suppose $||x|| > \varepsilon/16$. Let

$$a = \left(\sum_{i=1}^{\infty} \lambda_i\right)^{-1} \varepsilon / 16 < 1,$$

and consider

$$||x_j - ax|| + a \sum_{i=1}^{\infty} \lambda_i, \quad j = 1, 2, \dots$$

For any $\rho > 0$ there is a sufficiently large integer j_0 such that for all $j > j_0$,

$$||x_j - ax|| < ||x_j|| - a||x|| + \rho.$$

Thus, if $\rho < \delta - (1 - ||x||(\Sigma \lambda_i)^{-1})\varepsilon/16$,

$$||x_{j} - ax|| + a \sum_{i=1}^{\infty} \lambda_{i} < ||x_{j}|| - a||x|| + \rho + a \sum_{i=1}^{\infty} \lambda_{i}$$

$$< ||x_{j}|| - \left(||x|| \left(\sum_{i=1}^{\infty} \lambda_{i}\right)^{-1} - 1\right) \frac{\varepsilon}{16} + \rho$$

$$< ||x_{j}|| + \delta = (1 + \delta)||x_{j}||,$$

for all large j. Clearly we can replace x by some approximate $\sum_{i=1}^{i_0} \lambda_i x_i$ to get that, for sufficiently large j,

$$\left\|x_{j}-a'\sum_{i=1}^{i_{0}}\lambda_{i}x_{i}\right\|+a'\sum_{i=1}^{i_{0}}\lambda_{i}<(1+\delta)\|x_{j}\|$$

where

$$a' = \left(\sum_{i=1}^{i_0} \lambda_i\right)^{-1} \frac{\varepsilon}{16} = \left(\sum_{i=1}^{i_0} \lambda_i\right)^{-1} \tau.$$

This contradicts the fact that $x_j \in A_m$ if $i_0 < n(m-1) < j < n(m)$, and therefore $||x|| < \varepsilon/16$.

For each i let w_i be a w^* cluster point of $\{x_i: i \in \mathbb{N}\}$ such that $\bar{d}(x_i, w_i) < i^{-1} + \inf\{\bar{d}(x_i, w): w \text{ is a } w^* \text{ cluster point of } \{x_i: i \in \mathbb{N}\}\}$ where $\bar{d}(\cdot, \cdot)$ is a translation invariant metric compatible with the w^* topology on B_{X^*} . Clearly $w^* \lim(x_i - w_i) = 0$, completing the proof.

REFERENCES

- 1. N. Dunford and J. T. Schwarz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958.
- 2. W. B. Johnson and M. Zippin, Subspaces of $(\Sigma G_n)_{\downarrow}$ and $(\Sigma G_n)_{co}$. Israel J. Math. 17 (1974), 50-55.
- 3. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in Math., vol. 338, Springer-Verlag, Berlin and New York, 1973.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139