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THE KERNEL OF THE POINCARÉ SERIES OPERATOR

THOMAS A. METZGER

Abstract. By modifying a proof of Ljan, a natural basis for the kernel of

the Poincaré series operator in the Bers space can be given. The basic idea

behind the proof also extends to give such a basis in the case of a general

Kleinian group and a discontinuous group acting on certain domains in C.

1. Introduction. Let T be a Fuchsian group acting on the unit disk D in the

complex plane. Let a be an integer, a > 2, and suppose that / is a holomor-

phic function defined on D. The Poincaré series for / with respect to T of

weight a is defined to be

W rX*) =   2 /(Az)A'(z)", (1)

whenever this series converges independently of the particular arrangement

chosen. It is clear that whenever the series in (1) exists it defines a holomor-

phic function on D which is an automorphic form of weight a with respect to

T, i.e., it is a holomorphic function F such that

F[ A(z)]A'(z)q = F(z)   for all A in Y and z in D. (2)

The series in (1) were originally considered by Poincaré [8] and as he

recognized there is seemingly no way to assert, apriori, that 9q(f, T)(z) ^ 0.

Thus Poincaré considered meromorphic functions / and defined (1) for this

latter case. Recently, Ljan [6] considered the problem of finding the kernel of

this operator in a natural space of functions, the Bers space Aq(D). He proved

that a certain set was dense in Aq(D) n Ker 9q. Unfortunately, it is very

difficult to compute any of the functions which belong to this set. This is due

to the fact that his functions are defined by an integral representation. In this

note it is shown that, by modifying the proof of Ljan, one can get a natural

set with the property that its closed linear span in Aq(D) equals Ker 9q n

Aq(D). This set has the advantage that, given the group T, each individual

function in the set is easily computed. Of course, this does not solve the

classical Poincaré problem as it does not yield a decision process for de-

termining Ker 9q.

2. Preliminaries. The Bers space Aq(T) is defined to be the Banach space of

holomorphic automorphic forms of weight a (i.e., (2) holds) such that

//Bi/(z)|(l-|z|2)?-2axa><oo,
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where ß is a fundamental region for T with the property that the two

dimensional measure of the boundary of fl is zero. ^?(id) is denoted by

Aq(D). These spaces were introduced by Bers (see [1]) and he proved:

Theorem A (Bers [2]). If f is in Aq(D) then 9q(f, T) exists. Moreover, 0q:

Aq(D) -> Aq(T) is a bounded linear operator of norm less than or equal to one

which is onto.

The Banach space Bq(T) is defined to be the space of holomorphic

automorphic forms of weight q such that

sup|/(z)|(l-|z|2)?<oo.
D

This space is related to Aq(T) by:

Theorem B (Bers [2]). The dual space ofAq(T) is Bq(T) under the Petersson

inner product

(F, G) = ffaF(z)G(T)(l -\z\2)2"-2 dx dy. (3)

In order to motivate our result we define

K = Ker Bq n Aq(D ). (4)

It is clear that A' is a closed subspace of Aq(D). The following computation

involving a switch of summation and integration is standard (see [1] and [7]).

If / is in K, then (1) is identically zero and Theorem B implies that, for every

G in Bq(T),

o = //^,(/,r)(z)G(7)(i -\z\2)2q-2dxdy

-  2   ttj(Az)A\zy-G(z)(\-\z\2)2q-2dxdy
AerJJa

=   2   ff J(z)~G(z)(\-\z\2)2q-2dxdy
AeTJJASl

= jjj(z)-G(z){\-\z\2)2q-2dxdy.

The switch of summation and integration is justified by the fact that the

integrals converge absolutely. Thus we have shown:

Lemma 1. / is in K ij and only ij (j, G) = 0 jor all G in Bq(T).

Note. It makes sense to consider (/, G) for /in Aq(D) and G in Bq(T) since

Bq(T) Ç Bq(D) = Bq(id), for all groups T.

Define k to be the (closed) subspace of Aq(D) spanned by {g(z; k,A):

A G T and k = 0,1,2, . . . } where

g(z;k,A) = zk-(Az)kA'(z)q. (5)
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Theorem 1. <c = A.

3. Proof of Theorem 1. It is well known that if / is in Aq(D) and

g(z) = /(z) - f(Az)A'(z)q for some A in T then, 9q(g, T)(z) = 0. It follows

immediately that k Ç A. To prove the opposite containment we first prove:

Proposition 2. Suppose that h is in Bq(D) and that

(g(-;k,A),h) = 0 (6)

for all A in T and k = 0,1,2,_Then h is in Bq(T).

Proof. If h(z) = 'E^'=0bnzn, then an elementary computation yields (zk, h)

= trbkB(2q — I, k + 1) where B(p, q) is the usual beta function. Similarly, if

A is in T and

h(N(z))N'(z)" = I cnz",
rt-0

with A = A ~ \ an elementary change of variables in (3) yields that

((A(z)f(A'(z))",h) = *ckB(2q -l,k+ 1).

Thus, (6) implies that (2) holds for all A in V and the proof is complete.

To complete the proof of the theorem assume that k is strictly contained in

A and let / be a bounded linear functional on A which is not identically zero

on A and which annihilates k. By the Hahn-Banach theorem / can be

extended to a bounded linear functional on Aq(D), which is also denoted by /.

Theorem B implies that 1(f) = (/, h) for some h in Bq(D). Since / annihilates

k it follows from Proposition 1 that h belongs to Bq(T). It follows from

Lemma 1 that (/, h) = 0 for all / in A and then / = 0. This contradiction

completes the proof.

4. Concluding remarks. It follows immediately from the definition of k that:

Corollary 1. dim A = oo.

Finally we note that the proof given above can be generalized to almost

every situation of current interest. The reason for this is that the basic

ingredient is Proposition 1, and if one can suitably modify the functions in (5)

so that this proposition still holds then the theorem will follow with the same

proof. We shall indicate below what the correct modification should be in the

case T is a Kleinian group or a discrete group acting on certain domains in

C.

Let T be a Kleinian group with region of discontinuity ß. It is well known

that A (Q) has a Bergman kernel function Kq(z, f ) which has the property

that (Kq(-, Ç),g) =g(Ç ) for all g in Bq(tt). Let Çk be a dense countable subset

of fl and substitute Kq(z, lk) for z* in (5). It is clear that Proposition 1

remains valid and thus Theorem 1 holds with k being the linear subspace of

Aq(ü) spanned by these new functions (see Kra [5] for complete details).

A similar observation can be made in the case of several complex variables.
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In [4], Earle described a class of domains in C for which analogous results to

those of Bers for one variable could be proved. The domains again have a

Bergman kernel function so that upon taking a dense countable subset and

using the same substitution as above one sees immediately that Theorem 1

holds in this case. s

It should also be noted that the same idea works in the case of relative

Poincaré series. In [3], Drasin defined such series and proved that the needed

results from the Bers space theory still hold. It is not hard to see that a proper

substitute in this case for the functions z * in (5) is 9(Kq( •, $k)Xx)(z) where

{$k} are a dense subset of D/Tx and T, is a subgroup of the group T.

Unfortunately, in all three of the cases above one loses the explicitness of

(5). This is due to the fact that one merely knows of the existence of the

Bergman kernel but one does not have, in the general case, an explicit

function.

It should also be noted that the main theorem above does not solve the

classical problem of Poincaré. Obviously, one cannot decide via some

algorithm whether or not a specific function belongs to K. Finally, we note

that the set k is not well behaved under auxiliary conjugation of the group.

Note (Added in proof). J. Elstrodt (private communication) has pointed

out that one need only consider A in a generating set in definition (5) and

Theorem 1 remains valid. The proof is exactly the same as the one above.
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