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THE SOLVABILrrV OF OPERATOR EQUATIONS WITH

ASYMPTOTIC QUASIBOUNDED NONLINEARTTIES1

P. S. MILOJEVIC

Abstract. We study tite solvability of operator equations involving quasi-

bounded and asymptotically quasibounded nonlinear perturbations of linear

Fredholm operators.

1. Let X and Y be Banach spaces, L: X -» Y a linear Fredholm map of

nonnegative index and A: X -» Y a compact map. The operator equation of

the form

Tx = Ax + Nx=f (1)

has been extensively studied by many authors in recent years. Under various

growth conditions on A, the surjectivity of T has been proven in a number of

papers (see [4], [5], [7] and the references therein).

Alternatively, beginning with a paper of Landesman and Lazer [6], much

work has been done on the solvability of equation (1) for a certain range of

values of Pf, where P is the projection of Y on the cokernel of A. Using the

stable homotopy arguments, Nirenberg [9], [10], Berger [1], Mawhin [8],

Podolak [11], Borisovich, Zvyagin and Sapronov [2] and others have studied

equation (1). The alternative method has also been used to study equation (1)

(with noncompact A too) in a series of papers by Cesari and his coworkers,

Fuöik, Kucera and Neöas [5], and many others (cf. the survey paper by Cesari

[3] and the monograph by Berger [1] for contributions of other authors). In all

these papers (except in [2], [7], [11]) A is assumed to have less than linear or

linear growth.

In [2] and [11] the authors have studied equation (1) under the assumption

that A is asymptotically linear or asymptotically Lipschitz (i.e., B in Defini-

tion 1 below is a Lipschitz map), respectively. In a series of papers Mawhin

(cf. [7], [8]) has studied equation (1) with / E R(A) involving certain quasi-

bounded maps A using his coincidence degree.

In this paper we study the surjectivity of T with A either quasibounded or

asymptotically quasibounded as defined below. Moreover, in case when the

index of A, i(A), is zero we provide a new growth condition on PN\kaA that

insures the solvability of equation (1) with these types of nonlinearities A. In

the proofs of our main results we use a special case of the degree theory for
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compact perturbations of nonlinear C'-Fredholm maps as developed in [2]

or, equivalently, the stable homotopy arguments since for our map T this

degree can be defined in terms of elements of the stable homotopy group

*n+m(Sm) (see [IJ, [2], [9]).

2. Set Xx = ker A and Y2 = A(X). Since A is Fredholm, dim Xx = n < oo

and Y2 is closed we have the following direct sum decompositions: X = Xx ©

X2 and Y = 7, © Y2 with dim Yx = m < oo and md(A) = n - m > 0. De-

fine a new norm on X by

\\x\\x = max{\\xx\\,\\x2\\),

where x = x, + x2 with x, G X¡, i = 1,2. Let P: Y -+ Yx be a linear continu-

ous projection onto Yx, H be the inverse of the linear homeomorphism A\x :

X2^ fandet = ||ff||.

Theorem 1. Suppose that Jor a given Jin Y thejollowing conditions hold:

(1) There exist constants Mf>0 and Nf > 0 such that PN(xx + Xj) - //, ¥=

OJor ||x2|| < r, r > Nf, ||x,|| > rM, and t G [0, 1];

(2) M = H(I - P)N is quasibounded, i.e.,

\M\= lim sup J^M- < oo
IHI,->oo   F||i

and |A/|max{l, Mf) < 1;

(3) the stable homotopy class t/p oj PN\S¡¡~X: S¡¡~x -> Yx\{0), p > rMf, is

nontrivial, where S"~x C A', is a sphere oj radius p.

Then equation (I) is solvable jor this j.

Proof. Let e > 0 be small. By (2) there exists R > Nf such that

||A/x||=||//(/-P);vx||<(|M|+e)||x||1

for all ||x||, > R. Moreover, there exists an r > R such that Ax + t(I —

P)Nx - tj2 ^ 0 for all x = x, + x2 with ||x,|| < rA^ and ||x2|| = r and

t G [0, 1]. If not, then for each r > R there exist t E [0, 1] and x with

||x,|| < rMf and ||x2|| = r such that ^fx2 + t(I - P)Nx - tj2 = 0, and there-

fore

||x2|| < \\H(I - P)Nx\\ + a\\J2\\ < (\M\ + e)||x||, + a\[f2\\,

or

1 < l(\M\+e)\\x\\x-rj\\J2\\ < (|A/|+ e)max{l, Mf) +^||/2||.

Passing to the limit as /•-» oo, we obtain 1 < (|M| + e)max{l, Mf) which is

in contradiction with condition (2) for e small enough. Hence, an r with the

above property exists.

Next, we define D = [x = xx + x2 G X\ ||x,|| < rMf, ||x2|| < r) with r

chosen as above, and define the homotopy H: [0, 1] X D -» Y by

H(t, x) = (Ax + t(I - P )Nx - tf2, PN(xx + tx2) - //,)•
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We claim that H(t, x) ^ 0 for / E [0, 1] and x E dD. Indeed, if x Ê 3D is

such that ||x2|| < r, then ||x,|| = rMf and by (1), PN(xx + txj - tfx ¥= 0 for

all t E [0, 1]. If x E dD is such that ||x,|| < rMf, then ||x2|| = r and Ax + t(I

- P)Nx - tf2 =r= 0 for all t E [0, 1]. Thus, by the homotopy theorem in [2],

deg(,4 + A - /, D, 0) = deg(#0, D, 0) = tl,

which, by the solvability property of this degree, implies that Ax + Nx = f

for some x E D.   □

To treat a larger class of nonlinear maps A, we need:

Definition 1. A map A: X -* Y is said to be asymptotically quasibounded if

there exists a nonzero continuous quasibounded map B: X -> Y, i.e.,

|B|=limsupJlM< «j
M-«    11*11

such that

(A) lim^^, N(Rx)/R = B(x) uniformly on bounded sets in X.

Such maps with B Lipschitz have been studied by Podolak [11].

Theorem 1 admits the following extension:

Theorem 2. Suppose that A satisfies condition (A) and that B is continuous,

satisfies conditions (1) and (3) of Theorem 1 for / = 0 and that the following

condition holds:

(2') K = H(I - P)B is quasibounded, i.e.,

\K\ = lim sup Jj^i < oo
M-*«>   ll*lli

and | A|max{l, M0} < 1.

Then equation (1) is solvable for each f in Y.

Proof. Since for each/in Y, Nfx = Ax — /satisfies condition (A) with the

same B, it is sufficient to consider the case/ = 0. Define

D = {x = x, + x2 £ A| ||x,|| < rM0, ||x2|| < r),

where r is chosen as in Theorem 1 using property (2') of A. For R > 0, define

the map HR: D ^ Y by

HR(x) = (l/R)(A(Rx) + (I - P)N(Rx),PN(Rx))

and the homotopy H: [0, 1] X D -» Y by

H(t, x) = (Ax + t(I - P)Bx, PB(xx + tx2)).

By our choice of r we know that H(t, x) ¥= 0 for t E [0, 1] and x E 3D.

Clearly, if x E X is a solution of equation (1), then u = x/R E D is a

solution of HR(u) = 0 for R sufficiently large, and conversely. Moreover,

limj,^ HR(x) = H(l, x) uniformly for x E D with ||#(1, x)|| > e > 0 for all

x E 3D since H(l, •) is a proper map. In view of this, it follows that for

sufficiently large R, HR(x)ik0 on 3D and

FR(t, x) = H(\, x) + t(HR(x) - H(l, x)) ¥= 0
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for / E [0, 1] and x E 3D. The compactness of A and condition (A) imply

that B is compact and consequently

FR(t, x) = Ax + (l - t)Bx + tN(Rx)/R

is an admissible homotopy on [0, 1] x D (cf. (4.2) in [2]). Hence,

deg(HR, D, 0) = deg(H(l, ■), D, 0) - deg(H(0, ■), D, 0) = tl

which implies that the equation HR(x) = 0 is solvable in D.   □

Remark. When A is asymptotically linear, i.e., A(x) = B(x) + w(x), x E

X, for some continuous and linear map B: A-» Y with w(x)/||x|| -»0 as

||x|| -» oo, then A is quasibounded with |A| = ||fi||. Hence, Theorem 1

extends Theorem 4.5 in [2], which is, on the other hand, an abstract extension

of some results of Nirenberg [9] involving everywhere bounded nonlinearities

A. Other extensions of Nirenberg's results to sublinear or quasibounded

nonlinearities are given in [1], [4], [5], [7], [8] (cf. [1] for other references).

Remark. If B in condition (A) is Lipschitz, i.e., ||2?x - By\\ < k\\x — y\\

for all x, v E X and some small k > 0, then condition (1) in Theorem 2 can

be replaced by the following easier to verify condition of Podolak [11]:

(1') ||PA(a-x0)|| > b for some positive b and all a E R" with ||a|| = 1,

where x0 = {x01, . . ., x0n} is a fixed basis for ker A of unit vectors and

a-x0= a,x01 + • • • +a„x0n.

In this sense Theorem 2 extends Theorem 1 in [11].

Let us now look at a new condition on PN\X which implies that

deg(PN\x¡, B(0, r), 0) ¥= 0 with B(0, r) c A,. Suppose that A and y are such

that there exist a map /: A, -> Y* and a continuous and odd map G:

A, -> y, with Gx ¥= 0 for x ¥= 0 and (Gx, Jx) = ||C7x|| • ||/x|| for all x E A,.

This is always so if Y = A or Y = A*. Indeed, if Y, = A,, as G and J we can

take the identity and the normalized duality map, respectively; while, if

Yx = X* as G and / we can take the normalized duality map and the

identity, respectively. The condition in question is:

(4) \\PNx\\ + (PNx, Jx)/\\Jx\\ > 0 for x E 35(0, p), p > rMf.

Corollary 1. Let A and N satisfy conditions (1) and (2) of Theorem 1. Then,

if condition (4) holds for all p > rM¡ and the index of A is zero, equation (1) is

solvable.

Proof. By Theorem 1 it suffices to show that deg(PN, B(0, p), 0) ¥= 0,

where PN is restricted to B(0, p). Define the homotopy H: [0, 1] X 5(0, p) -»

y, by H(t, x) = tPNx + (1 - t)Gx. Then H(t, x) ^ 0 for t E [0, 1] and

x E dB. If not, then tPNx + (1 - t)Gx = 0 for some t E [0, 1] and x E dB.

Since r ^ 0,1, we have

IIPAxil + (/Wx' JX) = i^llGxIl - -Lli  (GX' JX) = 0
W™*»+       ||7x|| /     "'I t \\Jx\\
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in contradiction with condition (4). By the oddness of G we obtain:

deg(/W, B(0, p), 0) = deg(G, B(0, p), 0) * 0.   □

Similarly, using Theorem 2, we obtain:

Corollary 2. Let K be asymptotically quasibounded and B satisjy conditions

(1) and (2') oj Theorem 2 with / = 0. Then, if ind A = 0 and PB satisfies

condition (4) for / = 0, equation (I) is solvable for each f in Y.

Under a somewhat stronger condition than (4), we have:

Theorem 3. Let X and Y be Banach spaces with dim X = dim Y < oo and

let T: X —* Y be continuous and satisfy

(5) || 7x|| + (Tx, /x)/|| Jx|| -» oo as ||x|| -» oo, where J and G are as above.

Then T(X) = Y.

Proof. Let/ in Y be fixed. By condition (5) there exists an #y > 0 such that

\\Tx-tf\\>0   for \\x\\=rf,   t E[0, 1]

and

\\Tx\\ + i]JJxJ1>0   for Wl ='/•

The first inequality implies that

deg(r - /, 5(0, rf), 0) = deg(r, B(0, rf), 0),

which is nonzero by the second inequality as shown in Corollary 1. Hence,

Tx = / is solvable.   □

Remark. Along similar lines one can show that if T: X -> X is continuous

and compact (or condensing) and I — T satisfies condition (5), then (/ —

T)(X) = X (the proof will appear in a forthcoming paper by the author).

Condition (5) for PN clearly holds if PN is coercive on Xx, i.e.,

if (/Wx, Jx)/\\Jx\\ -» oo as ||x|| ^ oo, x G Xx, or

if (/Wx, Jx) > - cx\\Jx\\ for all x G Xx and some c, > 0 and ||/Wx|| -» oo

as ||x|| -> oo, x G Xx, and, in particular,

if ||/Wx|| > c2||x||* for all x G A', and some c2 > 0, k > 0.

The last condition holds if N is Ar-homogeneous. Indeed, since ||/Wx|| =£ 0

for x G 35(0, r) c Xx,

a = min{||/Wx|| | ||x||= r) > 0

and ||/Wx|| > (a/r*)||x||* for all ||x|| > r.

In view of the above discussion, we have the following special case of

Theorem 2.1 in [8]:

Theorem 4. Let A : D(A) c X -» Y be a linear Fredholm map of index zero

and N: D c X -» X a continuous compact map, where D is open and bounded.

Suppose that

(i) Ax * XNxfor x E D(A) ndDandXe (0, 1);
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(ii) PNx ¥= Ofor each x G ker A n 3Z>;

(in) for some isomorphism L: Yx-> Xx,

\\LPNx\\ + (LP"x'Jx>> > 0   forxEdD nXx
\\Jx\\

with J the normalized duality map from Xx to 2X'.

Then the equation Ax — XNx = 0 has at least one solution in D for each

X E [0, 1].

Proof. It suffices to show (cf. [8]) that deg (LPN\X¡, D n Xx, 0) ¥= 0. But,

this follows from condition (iii) as in Corollary 1 since / is odd.   □

Remark. The above results could be proven by using the homotopy

H(t, x) = (x2 + tH(I - P)Nx- tf2, PN(xx + tx2) - //,)

instead. Hence, it is sufficient to require that the map H(I — P)N: X -* X be

compact or condensing. The same observation holds for Theorem 2 with N

replaced by B. Moreover, Theorem 2 of Podolak [11] can be shown to be

valid for the nonlinearities considered in our Theorem 2.
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