THE SOLVABILITY OF OPERATOR EQUATIONS WITH ASYMPTOTIC QUASIBOUNDED NONLINEARITIES¹

P. S. MILOJEVIĆ

ABSTRACT. We study the solvability of operator equations involving quasibounded and asymptotically quasibounded nonlinear perturbations of linear Fredholm operators.

1. Let X and Y be Banach spaces, $L: X \to Y$ a linear Fredholm map of nonnegative index and $N: X \to Y$ a compact map. The operator equation of the form

$$Tx = Ax + Nx = f \tag{1}$$

has been extensively studied by many authors in recent years. Under various growth conditions on N, the surjectivity of T has been proven in a number of papers (see [4], [5], [7] and the references therein).

Alternatively, beginning with a paper of Landesman and Lazer [6], much work has been done on the solvability of equation (1) for a certain range of values of Pf, where P is the projection of Y on the cokernel of A. Using the stable homotopy arguments, Nirenberg [9], [10], Berger [1], Mawhin [8], Podolak [11], Borisovich, Zvyagin and Sapronov [2] and others have studied equation (1). The alternative method has also been used to study equation (1) (with noncompact N too) in a series of papers by Cesari and his coworkers, Fučik, Kučera and Nečas [5], and many others (cf. the survey paper by Cesari [3] and the monograph by Berger [1] for contributions of other authors). In all these papers (except in [2], [7], [11]) N is assumed to have less than linear or linear growth.

In [2] and [11] the authors have studied equation (1) under the assumption that N is asymptotically linear or asymptotically Lipschitz (i.e., B in Definition 1 below is a Lipschitz map), respectively. In a series of papers Mawhin (cf. [7], [8]) has studied equation (1) with $f \in R(A)$ involving certain quasibounded maps N using his coincidence degree.

In this paper we study the surjectivity of T with N either quasibounded or asymptotically quasibounded as defined below. Moreover, in case when the index of A, i(A), is zero we provide a new growth condition on $PN|_{kerA}$ that insures the solvability of equation (1) with these types of nonlinearities N. In the proofs of our main results we use a special case of the degree theory for

Received by the editors June 27, 1978.

AMS (MOS) subject classifications (1970). Primary 47H15.

¹This work was partially supported by the NRC Grant A 4556.

compact perturbations of nonlinear C^1 -Fredholm maps as developed in [2] or, equivalently, the stable homotopy arguments since for our map T this degree can be defined in terms of elements of the stable homotopy group $\pi_{n+m}(S^m)$ (see [1], [2], [9]).

2. Set $X_1 = \ker A$ and $Y_2 = A(X)$. Since A is Fredholm, dim $X_1 = n < \infty$ and Y_2 is closed we have the following direct sum decompositions: $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$ with dim $Y_1 = m < \infty$ and $\inf(A) = n - m > 0$. Define a new norm on X by

$$||x||_1 = \max\{||x_1||, ||x_2||\},\$$

where $x = x_1 + x_2$ with $x_i \in X_i$, i = 1,2. Let $P: Y \to Y_1$ be a linear continuous projection onto Y_1 , H be the inverse of the linear homeomorphism $A|_{X_2}$: $X_2 \to Y_2$ and $\alpha = ||H||$.

THEOREM 1. Suppose that for a given f in Y the following conditions hold:

- (1) There exist constants $M_f > 0$ and $N_f > 0$ such that $PN(x_1 + x_2) tf_1 \neq 0$ for $||x_2|| \leq r$, $r > N_f$, $||x_1|| > rM_f$ and $t \in [0, 1]$;
 - (2) M = H(I P)N is quasibounded, i.e.,

$$|M| = \limsup_{\|x\|_1 \to \infty} \frac{\|Mx\|}{\|x\|_1} < \infty$$

and $|M| \max\{1, M_f\} < 1$;

(3) the stable homotopy class η_{ρ} of $PN|S_{\rho}^{n-1}: S_{\rho}^{n-1} \to Y_1 \setminus \{0\}, \ \rho > rM_f$, is nontrivial, where $S_{\rho}^{n-1} \subset X_1$ is a sphere of radius ρ .

Then equation (1) is solvable for this f.

PROOF. Let $\varepsilon > 0$ be small. By (2) there exists $R > N_t$ such that

$$||Mx|| = ||H(I - P)Nx|| \le (|M| + \varepsilon)||x||_1$$

for all $||x||_1 > R$. Moreover, there exists an r > R such that $Ax + t(I - P)Nx - tf_2 \neq 0$ for all $x = x_1 + x_2$ with $||x_1|| < rM_f$ and $||x_2|| = r$ and $t \in [0, 1]$. If not, then for each r > R there exist $t \in [0, 1]$ and x with $||x_1|| < rM_f$ and $||x_2|| = r$ such that $Ax_2 + t(I - P)Nx - tf_2 = 0$, and therefore

$$||x_2|| \le ||H(I-P)Nx|| + \alpha ||f_2|| \le (|M| + \varepsilon)||x||_1 + \alpha ||f_2||,$$

or

$$1 < \frac{1}{r}(|M| + \varepsilon)||x||_1 + \frac{\alpha}{r}||f_2|| < (|M| + \varepsilon)\max\{1, M_f\} + \frac{\alpha}{r}||f_2||.$$

Passing to the limit as $r \to \infty$, we obtain $1 < (|M| + \varepsilon)\max\{1, M_f\}$ which is in contradiction with condition (2) for ε small enough. Hence, an r with the above property exists.

Next, we define $\overline{D} = \{x = x_1 + x_2 \in X | ||x_1|| \le rM_f, ||x_2|| \le r\}$ with r chosen as above, and define the homotopy $H: [0, 1] \times \overline{D} \to Y$ by

$$H(t, x) = (Ax + t(I - P)Nx - tf_2, PN(x_1 + tx_2) - tf_1).$$

We claim that $H(t, x) \neq 0$ for $t \in [0, 1]$ and $x \in \partial D$. Indeed, if $x \in \partial D$ is such that $||x_2|| < r$, then $||x_1|| = rM_f$ and by (1), $PN(x_1 + tx_2) - tf_1 \neq 0$ for all $t \in [0, 1]$. If $x \in \partial D$ is such that $||x_1|| < rM_f$, then $||x_2|| = r$ and $Ax + t(I - P)Nx - tf_2 \neq 0$ for all $t \in [0, 1]$. Thus, by the homotopy theorem in [2],

$$\deg(A + N - f, \overline{D}, 0) = \deg(H_0, \overline{D}, 0) = \eta_r,$$

which, by the solvability property of this degree, implies that Ax + Nx = f for some $x \in D$. \square

To treat a larger class of nonlinear maps N, we need:

DEFINITION 1. A map $N: X \to Y$ is said to be asymptotically quasibounded if there exists a nonzero continuous quasibounded map $B: X \to Y$, i.e.,

$$|B| = \limsup_{\|x\| \to \infty} \frac{\|Bx\|}{\|x\|} < \infty$$

such that

(A) $\lim_{R\to\infty} N(Rx)/R = B(x)$ uniformly on bounded sets in X.

Such maps with B Lipschitz have been studied by Podolak [11].

Theorem 1 admits the following extension:

THEOREM 2. Suppose that N satisfies condition (A) and that B is continuous, satisfies conditions (1) and (3) of Theorem 1 for f = 0 and that the following condition holds:

(2') K = H(I - P)B is quasibounded, i.e.,

$$|K| = \limsup_{\|x\| \to \infty} \frac{\|Kx\|}{\|x\|_1} < \infty$$

and $|K| \max\{1, M_0\} < 1$.

Then equation (1) is solvable for each f in Y.

PROOF. Since for each f in Y, $N_f x = Nx - f$ satisfies condition (A) with the same B, it is sufficient to consider the case f = 0. Define

$$\overline{D} = \{ x = x_1 + x_2 \in X | \|x_1\| \le rM_0, \|x_2\| \le r \},$$

where r is chosen as in Theorem 1 using property (2') of K. For R > 0, define the map $H_R: \overline{D} \to Y$ by

$$H_R(x) = (1/R)(A(Rx) + (I - P)N(Rx), PN(Rx))$$

and the homotopy $H: [0, 1] \times \overline{D} \to Y$ by

$$H(t, x) = (Ax + t(I - P)Bx, PB(x_1 + tx_2)).$$

By our choice of r we know that $H(t, x) \neq 0$ for $t \in [0, 1]$ and $x \in \partial D$. Clearly, if $x \in X$ is a solution of equation (1), then $u = x/R \in D$ is a solution of $H_R(u) = 0$ for R sufficiently large, and conversely. Moreover, $\lim_{R \to \infty} H_R(x) = H(1, x)$ uniformly for $x \in D$ with $||H(1, x)|| > \varepsilon > 0$ for all $x \in \partial D$ since $H(1, \cdot)$ is a proper map. In view of this, it follows that for sufficiently large R, $H_R(x) \neq 0$ on ∂D and

$$F_R(t,x) = H(1,x) + t(H_R(x) - H(1,x)) \neq 0$$

for $t \in [0, 1]$ and $x \in \partial D$. The compactness of N and condition (A) imply that B is compact and consequently

$$F_R(t,x) = Ax + (1-t)Bx + tN(Rx)/R$$

is an admissible homotopy on $[0, 1] \times \overline{D}$ (cf. (4.2) in [2]). Hence,

$$\deg(H_R, \overline{D}, 0) = \deg(H(1, \cdot), \overline{D}, 0) = \deg(H(0, \cdot), \overline{D}, 0) = \eta_r$$

which implies that the equation $H_R(x) = 0$ is solvable in D. \square

REMARK. When N is asymptotically linear, i.e., N(x) = B(x) + w(x), $x \in X$, for some continuous and linear map $B: X \to Y$ with $w(x)/||x|| \to 0$ as $||x|| \to \infty$, then N is quasibounded with |N| = ||B||. Hence, Theorem 1 extends Theorem 4.5 in [2], which is, on the other hand, an abstract extension of some results of Nirenberg [9] involving everywhere bounded nonlinearities N. Other extensions of Nirenberg's results to sublinear or quasibounded nonlinearities are given in [1], [4], [5], [7], [8] (cf. [1] for other references).

REMARK. If B in condition (A) is Lipschitz, i.e., $||Bx - By|| \le k||x - y||$ for all $x, y \in X$ and some small k > 0, then condition (1) in Theorem 2 can be replaced by the following easier to verify condition of Podolak [11]:

(1') $||PN(a \cdot x_0)|| > b$ for some positive b and all $a \in R^n$ with ||a|| = 1, where $x_0 = \{x_{01}, \ldots, x_{0n}\}$ is a fixed basis for ker A of unit vectors and

$$a \cdot x_0 = a_1 x_{01} + \cdot \cdot \cdot + a_n x_{0n}.$$

In this sense Theorem 2 extends Theorem 1 in [11].

Let us now look at a new condition on $PN|_{X_1}$ which implies that $\deg(PN|_{X_1}, B(0, r), 0) \neq 0$ with $B(0, r) \subset X_1$. Suppose that X and Y are such that there exist a map $J \colon X_1 \to Y_1^*$ and a continuous and odd map $G \colon X_1 \to Y_1$ with $Gx \neq 0$ for $x \neq 0$ and $(Gx, Jx) = ||Gx|| \cdot ||Jx||$ for all $x \in X_1$. This is always so if Y = X or $Y = X^*$. Indeed, if $Y_1 = X_1$, as G and G we can take the identity and the normalized duality map, respectively; while, if G is G and G are can take the normalized duality map and the identity, respectively. The condition in question is:

(4)
$$||PNx|| + (PNx, Jx)/||Jx|| > 0$$
 for $x \in \partial B(0, \rho), \rho > rM_{f}$.

COROLLARY 1. Let A and N satisfy conditions (1) and (2) of Theorem 1. Then, if condition (4) holds for all $\rho > rM_f$ and the index of A is zero, equation (1) is solvable.

PROOF. By Theorem 1 it suffices to show that $\deg(PN, B(0, \rho), 0) \neq 0$, where PN is restricted to $\overline{B}(0, \rho)$. Define the homotopy $H: [0, 1] \times \overline{B}(0, \rho) \rightarrow Y_1$ by H(t, x) = tPNx + (1 - t)Gx. Then $H(t, x) \neq 0$ for $t \in [0, 1]$ and $x \in \partial B$. If not, then tPNx + (1 - t)Gx = 0 for some $t \in [0, 1]$ and $x \in \partial B$. Since $t \neq 0,1$, we have

$$||PNx|| + \frac{(PNx, Jx)}{||Jx||} = \frac{1-t}{t} ||Gx|| - \frac{1-t}{t} \frac{(Gx, Jx)}{||Jx||} = 0$$

in contradiction with condition (4). By the oddness of G we obtain:

$$deg(PN, B(0, \rho), 0) = deg(G, B(0, \rho), 0) \neq 0.$$

Similarly, using Theorem 2, we obtain:

COROLLARY 2. Let K be asymptotically quasibounded and B satisfy conditions (1) and (2') of Theorem 2 with f = 0. Then, if ind A = 0 and PB satisfies condition (4) for f = 0, equation (1) is solvable for each f in Y.

Under a somewhat stronger condition than (4), we have:

THEOREM 3. Let X and Y be Banach spaces with dim $X = \dim Y < \infty$ and let $T: X \to Y$ be continuous and satisfy

(5) $||Tx|| + (Tx, Jx)/||Jx|| \to \infty$ as $||x|| \to \infty$, where J and G are as above. Then T(X) = Y.

PROOF. Let f in Y be fixed. By condition (5) there exists an $r_f > 0$ such that

$$||Tx - tf|| > 0$$
 for $||x|| = r_t$, $t \in [0, 1]$

and

$$||Tx|| + \frac{(Tx, Jx)}{||Jx||} > 0$$
 for $||x|| = r_f$.

The first inequality implies that

$$\deg(T - f, B(0, r_t), 0) = \deg(T, B(0, r_t), 0),$$

which is nonzero by the second inequality as shown in Corollary 1. Hence, Tx = f is solvable. \square

REMARK. Along similar lines one can show that if $T: X \to X$ is continuous and compact (or condensing) and I - T satisfies condition (5), then (I - T)(X) = X (the proof will appear in a forthcoming paper by the author).

Condition (5) for PN clearly holds if PN is coercive on X_1 , i.e.,

if
$$(PNx, Jx)/\|Jx\| \to \infty$$
 as $\|x\| \to \infty$, $x \in X_1$, or

if $(PNx, Jx) > -c_1 ||Jx||$ for all $x \in X_1$ and some $c_1 > 0$ and $||PNx|| \to \infty$ as $||x|| \to \infty$, $x \in X_1$, and, in particular,

if $||PNx|| > c_2||x||^k$ for all $x \in X_1$ and some $c_2 > 0$, k > 0.

The last condition holds if N is k-homogeneous. Indeed, since $||PNx|| \neq 0$ for $x \in \partial B(0, r) \subset X_1$,

$$a = \min\{\|PNx\| \mid \|x\| = r\} > 0$$

and $||PNx|| > (a/r^k)||x||^k$ for all ||x|| > r.

In view of the above discussion, we have the following special case of Theorem 2.1 in [8]:

THEOREM 4. Let $A: D(A) \subset X \to Y$ be a linear Fredholm map of index zero and $N: \overline{D} \subset X \to X$ a continuous compact map, where D is open and bounded. Suppose that

(i)
$$Ax \neq \lambda Nx$$
 for $x \in D(A) \cap \partial D$ and $\lambda \in (0, 1)$;

- (ii) $PNx \neq 0$ for each $x \in \ker A \cap \partial D$;
- (iii) for some isomorphism $L: Y_1 \rightarrow X_1$,

$$||LPNx|| + \frac{(LPNx, Jx)}{||Jx||} > 0 \quad for \ x \in \partial D \cap X_1$$

with J the normalized duality map from X_1 to $2^{X_1^*}$.

Then the equation $Ax - \lambda Nx = 0$ has at least one solution in D for each $\lambda \in [0, 1]$.

PROOF. It suffices to show (cf. [8]) that deg $(LPN|_{X_1}, D \cap X_1, 0) \neq 0$. But, this follows from condition (iii) as in Corollary 1 since I is odd. \square

REMARK. The above results could be proven by using the homotopy

$$H(t, x) = (x_2 + tH(I - P)Nx - tf_2, PN(x_1 + tx_2) - tf_1)$$

instead. Hence, it is sufficient to require that the map $H(I - P)N: X \to X$ be compact or condensing. The same observation holds for Theorem 2 with N replaced by B. Moreover, Theorem 2 of Podolak [11] can be shown to be valid for the nonlinearities considered in our Theorem 2.

REFERENCES

- 1. M. S. Berger, Nonlinearity and functional analysis, Academic Press, New York, 1977.
- 2. Yu. G. Borisovich, V. G. Zvyagin and Yu. I. Sapronov, Nonlinear Fredholm mappings and Leray-Schauder theory, Uspehi. Mat. Nauk 32 (1977), 3-54. (Russian)
- 3. L. Cesari, Functional analysis, nonlinear differential equations and the alternative method, Lecture Notes in Pure and Appl. Math., Vol. 19, M. Dekker, New York, 1976, pp. 1-197.
- 4. S. Fucik, Nonlinear equations with noninvertible linear part, Czechoslovak Math. J. 24 (1974), 467-495.
- 5. S. Fučik, M. Kučera, and J. Nečas, Ranges of nonlinear asymptotically linear operators, J. Differential Equations 17 (1975), 375-394.
- 6. A. Landesman and C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623.
- 7. J. Mawhin, The solvability of some operator equations with a quasibounded nonlinearity in normed spaces, J. Math. Anal. Appl. 45 (1974), 455–467.
- 8. _____, Topology and nonlinear boundary value problems, Dynamical Systems, Vol. 1, (Edited by L. Cesari, J. K. Hale and J. P. La Salle), Academic Press, New York, 1976, pp. 51-83.
- 9. L. Nirenberg, An application of generalized degree to a class of nonlinear problems, Troisième Colloq. d'Analyse Fonctionelle, (Liège, 1970), Centre Belge de Rech. Math., pp. 57-74.
- 10. _____, Topics in nonlinear functional analysis, Courant Inst. of Math. Sciences, New York, 1974.
 - 11. E. Podolak, On asymptotic nonlinearities, J. Differential Equations 26 (1977), 69-79.

DEPARTMENT OF MATHEMATICS, UNIVERSITÉ D'OTTAWA, OTTAWA, ONTARIO, CANADA K1N 6N5

Current address: Departamento de Matemática, Universidade Federal de Minas Gerais, 30.000 Belo Horizonte, Brasil