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A COMPLETE BOUNDED COMPLEX SUBMANIFOLD OF C3

PETER W. JONES

Abstract. We produce an example of a bounded complete complex sub-

manifold of C3. This is accomplished by using the duality between H'ÇT)

and BMOTT).

The question of whether there exists a complete bounded complex sub-

manifold of C has been an open problem (see [3] for definitions and a

discussion of this problem). We present here a method of producing such

submanifolds. Suppose that fx(z) and f2(z) are two functions which are

analytic and bounded in the unit disk A of C, and suppose that these two

functions have the property

f{\n{z)\+m*)\}M*)- oo (lo

for all curves Tea which terminate on 3A = T. (Here a denotes Euclidean

arc length.) Then z E A -» (z,fx(z),f2(z)) is an embedded complete bounded

complex submanifold of C3. To construct two bounded analytic functions /,

and /2 satisfying (1.1) we use C. Fefferman's theorem [1] that every real

valued function <p E BMO(T) can be represented by <p = u + v, u,vE

L°°(T). Here v denotes the Hubert transform of v. Consider the harmonic

function
oo        10"

<p(rew) = 2 — cos 10*0.
n-\    n

Then |V<p(z)| > 10"/100« if z is in the annulus

An = {z: 1 - 11 • lo""-1 <|z| < 1 - 9 • 10-"-1}.

To see this, note that |V((l/«)r10" cos 1O"0)| is of order of magnitude 10"/«

on An. The term

ln-\   icy \

VI 2 — cos We-

is small on A„ because it is bounded pointwise by 22"~îl0'//. The term

/     oo        îty \

V     2    -r- cos W9
\j-n+l    J J
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is small on A„ because it is bounded there by

2   f    \/j- \V-e-Wxo>-\
y'-n+l

Now if T is a curve in A terminating on T,

[\V<p(z)\do(z) = oo,
■T

because T must cross An for all n larger than some integer. It is easy to check

by hand that (p(e'e) G BMO(T). (This is clear anyway by Paley's theorem.) By

Fefferman's theorem, <p = u + v for some u, v G L°°(T). Let/, = euJrlu and

f2 = ev+iv. Then/, and/2 are in //*°°(A), and since/, and/2 are bounded from

below on A,

|/.^)|+|/2^)| >C|V<P(Z)|

for some constant c. This means that/, and/2 satisfy property (1.1).

We note that by replacing/, by/, + az for a suitable a G C,

zGA-*(/,(z)+az,/2(z))

yields a complete bounded immersed curve in C2. (Just pick o so that (z:

/((z)= -a)n{z:/^(z) = O}=0.)

With only a little more work one can produce a proper holomorphic

mapping tp from A to the ball in C4 such that the image of A is a complete

complex submanifold. Let tp(e'e) be as before. It is easy to check that

<p G VMO(T) (see [2] for the definition of VMO). By a theorem of Sarason

[2], <p can be represented as <p = u + v, where u and v axe continuous on T.

Let/, = eeu+iu and/2 = eev+iv, where e is chosen so that

l-e2-|/,|2-i/2|2>i

on T. Let

g(e*) -±tag{l - e2-|/1(e'i')|2-|/2(e'*)|2}.

Clearly g is continuous on T. Put/3 = eg+i*. Then |/3(z)| is continuous and

e2+^(z)|2+|/2(z)|2+|/3(z)|2^l

as |z| -> 1. The mapping <p(z) = (ez,/,(z),/2(z),/3(z)) now does the job.
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