A COMPLETE BOUNDED COMPLEX SUBMANIFOLD OF C3

PETER W. JONES

ABSTRACT. We produce an example of a bounded complete complex submanifold of \mathbb{C}^3 . This is accomplished by using the duality between $H^1(\mathbb{T})$ and BMO(\mathbb{T}).

The question of whether there exists a complete bounded complex submanifold of \mathbb{C}^n has been an open problem (see [3] for definitions and a discussion of this problem). We present here a method of producing such submanifolds. Suppose that $f_1(z)$ and $f_2(z)$ are two functions which are analytic and bounded in the unit disk Δ of \mathbb{C} , and suppose that these two functions have the property

$$\int_{\Gamma} \{ |f_1'(z)| + |f_2'(z)| \} d\sigma(z) = \infty$$
 (1.1)

for all curves $\Gamma \subset \Delta$ which terminate on $\partial \Delta = T$. (Here σ denotes Euclidean arc length.) Then $z \in \Delta \to (z, f_1(z), f_2(z))$ is an embedded complete bounded complex submanifold of C^3 . To construct two bounded analytic functions f_1 and f_2 satisfying (1.1) we use C. Fefferman's theorem [1] that every real valued function $\varphi \in BMO(T)$ can be represented by $\varphi = u + \tilde{v}$, $u, v \in L^{\infty}(T)$. Here \tilde{v} denotes the Hilbert transform of v. Consider the harmonic function

$$\varphi(re^{i\theta}) = \sum_{r=1}^{\infty} \frac{r^{10^r}}{r} \cos 10^r \theta.$$

Then $|\nabla \varphi(z)| > 10^n / 100n$ if z is in the annulus

$$A_n = \{z: 1 - 11 \cdot 10^{-n-1} \le |z| \le 1 - 9 \cdot 10^{-n-1}\}.$$

To see this, note that $|\nabla((1/n)r^{10^n}\cos 10^n\theta)|$ is of order of magnitude $10^n/n$ on A_n . The term

$$\left| \nabla \left(\sum_{j=1}^{n-1} \frac{r^{10^j}}{n} \cos 10^j \theta \right) \right|$$

is small on A_n because it is bounded pointwise by $2\sum_{i=1}^{n-1} 10^{i}/j$. The term

$$\left| \nabla \left(\sum_{j=n+1}^{\infty} \frac{r^{10'}}{j} \cos 10^{j} \theta \right) \right|$$

Received by the editors November 30, 1978.

AMS (MOS) subject classifications (1970). Primary 53B25; Secondary 30A78.

Key words and phrases. Complete bounded complex submanifold, proper mapping, BMO, VMO.

is small on A_n because it is bounded there by

$$2\sum_{j=n+1}^{\infty} 1/j \cdot 10^{j} \cdot e^{-(1/2)10^{j-n}}.$$

Now if Γ is a curve in Δ terminating on T,

$$\int_{\Gamma} |\nabla \varphi(z)| \ d\sigma(z) = \infty,$$

because Γ must cross A_n for all n larger than some integer. It is easy to check by hand that $\varphi(e^{i\theta}) \in BMO(T)$. (This is clear anyway by Paley's theorem.) By Fefferman's theorem, $\varphi = u + \tilde{v}$ for some $u, v \in L^{\infty}(T)$. Let $f_1 = e^{u + i\tilde{u}}$ and $f_2 = e^{v + i\tilde{v}}$. Then f_1 and f_2 are in $H^{\infty}(\Delta)$, and since f_1 and f_2 are bounded from below on Δ ,

$$|f_1'(z)| + |f_2'(z)| \ge c|\nabla \varphi(z)|$$

for some constant c. This means that f_1 and f_2 satisfy property (1.1).

We note that by replacing f_1 by $f_1 + \alpha z$ for a suitable $\alpha \in C$,

$$z \in \Delta \rightarrow (f_1(z) + \alpha z, f_2(z))$$

yields a complete bounded immersed curve in C^2 . (Just pick α so that $\{z: f_1'(z) = -\alpha\} \cap \{z: f_2'(z) = 0\} = \emptyset$.)

With only a little more work one can produce a *proper* holomorphic mapping φ from Δ to the ball in \mathbb{C}^4 such that the image of Δ is a complete complex submanifold. Let $\varphi(e^{i\theta})$ be as before. It is easy to check that $\varphi \in VMO(T)$ (see [2] for the definition of VMO). By a theorem of Sarason [2], φ can be represented as $\varphi = u + \tilde{v}$, where u and v are continuous on v. Let $f_1 = \varepsilon e^{u+i\tilde{u}}$ and $f_2 = \varepsilon e^{v+i\tilde{v}}$, where ε is chosen so that

$$1 - \varepsilon^2 - |f_1|^2 - |f_2|^2 \ge \frac{1}{2}$$

on T. Let

$$g(e^{i\theta}) = \frac{1}{2}\log\left\{1 - \varepsilon^2 - \left|f_1(e^{i\theta})\right|^2 - \left|f_2(e^{i\theta})\right|^2\right\}.$$

Clearly g is continuous on T. Put $f_3 = e^{g+i\tilde{g}}$. Then $|f_3(z)|$ is continuous and

$$\varepsilon^2 + |f_1(z)|^2 + |f_2(z)|^2 + |f_3(z)|^2 \to 1$$

as $|z| \to 1$. The mapping $\varphi(z) = (\varepsilon z, f_1(z), f_2(z), f_3(z))$ now does the job.

ACKNOWLEDGEMENTS. The author would like to thank Robert Greene for suggesting the first problem treated here, and R. Narasimhan for suggesting the second problem.

REFERENCES

- 1. C. Fefferman and E. M. Stein, H^p spaces of several real variables, Acta Math. 129 (1972), 137-193.
- 2. D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
- 3. P. Yang, Curvature of complex submanifolds of Cⁿ, Proc. Sympos. Pure Math., vol. 30, part 2, Amer. Math. Soc., Providence, R. I., 1977, pp. 135-137.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637