CHARACTERIZATION OF p-PREDICTORS

D. LANDERS AND L. ROGGE

ABSTRACT. Let (Ω, \mathcal{C}, P) be a probability space and $1 . It is shown that each operator <math>T: L_p(\Omega, \mathcal{C}, P) \to L_p(\Omega, \mathcal{C}, P)$ which is homogeneous, constant preserving, positive, quasi-additive and fulfills Dykstra's condition is an p-predictor with respect to a suitable σ -field, i.e. a nearest point projection onto a closed subspace $L_p(\Omega, \mathcal{B}, P)$, where $\mathcal{B} \subset \mathcal{C}$ is a σ -field. None of the conditions for T can be dispensed without compensation.

Let (Ω, \mathcal{C}, P) be a probability space and $L_p(\Omega, \mathcal{C}, P)$ (for 1) be the space of all <math>P-equivalence classes of real-valued \mathcal{C} -measurable functions whose absolute pth powers are integrable. Let \mathcal{B} be a sub- σ -field of \mathcal{C} , then $L_p(\Omega, \mathcal{B}, P)$ -or $L_p(\mathcal{B})$ for short—is the system of all equivalence classes of $L_p(\Omega, \mathcal{C}, P)$, containing a \mathcal{B} -measurable function. The operator $P_p^{\mathcal{B}}$ which assigns to each $f \in L_p(\Omega, \mathcal{C}, P)$ the unique element in $L_p(\Omega, \mathcal{B}, P)$ with minimum distance from f is called the p-predictor given \mathcal{B} (see Ando and Amemiya [2]). $P_p^{\mathcal{B}}f$ is the unique element of $L_p(\mathcal{B})$ with

$$||f - P_p^{\mathfrak{B}} f||_p \le ||f - g||_p$$

for all $g \in L_p(\mathfrak{B})$.

The operator $T = P_p^{\mathfrak{B}}$: $L_p(\Omega, \mathcal{Q}, P) \to L_p(\Omega, \mathcal{Q}, P)$ has the following properties (see [2]):

- (1) T is homogeneous, i.e., $T(\alpha f) = \alpha T f$, for $f \in L_p(\Omega, \mathcal{C}, P)$ and $\alpha \in \mathbb{R}$;
- (2) T is quasi-additive, i.e., T(f + Tg) = Tf + Tg, for $f,g \in L_p(\Omega, \mathcal{Q}, P)$;
- (3) T is constant-preserving, i.e., T1 = 1;
- (4) T is positive, i.e., $Tf \ge 0$, for $0 \le f \in L_p(\Omega, \mathcal{C}, P)$;
- (5) T fulfills Dykstra's condition, i.e. (see [5]), $||I T||_p \le 1$, where $||I T||_p$ is defined by

$$||I - T||_p = \inf\{c: ||f - Tf||_p \le c||f||_p\}.$$

In the special case p=2, $P_2^{\mathfrak{B}}f$ is the usual conditional expectation of f given \mathfrak{B} with respect to P. The operators $P_2^{\mathfrak{B}}$ have been characterized by many authors, for instance Bahadur [3], Douglas [4], Moy [7] and Pfanzagl [9]. But as far as we know there does not exist a characterization for $P_p^{\mathfrak{B}}$ if $p \neq 2$. This may be due to the fact that $P_p^{\mathfrak{B}}$ is in general not a linear operator (for a characterization of linearity of $P_p^{\mathfrak{B}}$ see [6]). Now we prove that every operator $T: L_p(\Omega, \mathcal{C}, P) \to L_p(\Omega, \mathcal{C}, P)$ which fulfills (1)-(5) is a p-predictor $P_p^{\mathfrak{B}}$ for some suitable sub- σ -field $\mathfrak{B} \subset \mathcal{C}$.

Received by the editors September 14, 1978.

AMS (MOS) subject classifications (1970). Primary 60A05; Secondary 46E30, 47B99. Key words and phrases. Projection, L_p -spaces, conditional expectation.

THEOREM. Let (Ω, \mathcal{R}, P) be a probability space and 1 . Let <math>T: $L_p(\Omega, \mathcal{R}, P) \to L_p(\Omega, \mathcal{R}, P)$ be a homogeneous, quasi-additive, constant preserving, positive operator fulfilling Dykstra's condition. Then there exists a sub-ofield $\mathfrak{B} \subset \mathcal{R}$ such that $T = P_p^{\mathfrak{B}}$, i.e., Tf is the nearest point projection of f onto the subspace $L_p(\Omega, \mathcal{R}, P)$.

PROOF. Let $F = \{ f \in L_p(\Omega, \mathcal{C}, P) \colon Tf = f \}$. Since T is homogeneous and quasi-additive, F is a linear space. The same properties imply that T is idempotent and hence $F = \{Tf \colon f \in L_p(\mathcal{C})\}$. Now we show that T is a projection onto F, i.e. we show

$$||f - Tf||_p \le ||f - Tg||_p \quad \text{for } f,g \in L_p(\mathcal{C}).$$

Using that T is homogeneous, quasi-additive and that $||I - T||_p \le 1$ we obtain

$$||f - Tf||_{p} = ||(f - Tg) - (Tf - Tg)||_{p} = ||(f - Tg) - (Tf + T(-g))||_{p}$$

$$= ||(f - Tg) - T(f + T(-g))||_{p} = ||(f - Tg) - T(f - Tg)||_{p}$$

$$\leq ||f - Tg||_{p}.$$

Now it remains to show that $F = L_p(\mathfrak{B})$ for some σ -field $\mathfrak{B} \subset \mathfrak{A}$. According to Proposition I-1-1 [8, p.2], this amounts to verifying that:

- (i) $1 \in F$,
- (ii) F is closed,
- (iii) $f \in F$ implies $f^+ \in F$.

Since T is constant-preserving, (i) holds. To prove (ii), let $f_n \in F$, $n \in \mathbb{N}$, and $||f_n - f||_{p} \to 0$. Then $Tf_n = f_n$ and the properties of T imply

$$||f - Tf||_p = ||f - Tf_n - T(f - Tf_n)||_p \le ||f - f_n||_{p} \xrightarrow[n \to \infty]{} 0$$

and hence Tf = f, i.e., $f \in F$.

To see (iii), let $f \in F$, i.e. f = Tf. We have to prove: $Tf^+ = f^+$. We show at first that $Tf^+ > f^+$. Since T is positive it suffices to show $Tf^+ > f$. As $f^+ - f > 0$, Tf = f, and T is positive, homogeneous and quasi-additive we obtain

$$0 \le T(f^+ - f) = T(f^+ - Tf) = Tf^+ - Tf = Tf^+ - f$$

i.e., $Tf^+ > f$. Let $g = Tf^+ - f^+$. Then g > 0 and Tg = 0. If g > 0 on a set of positive *P*-measure, then $h = P_p^{(\varnothing,\Omega)}g > 0$. Since the *p*-projection on $L_p(\{\varnothing,\Omega\})$ is unique we obtain $\|g-h\|_p < \|g\|_p$. Since $h \in F$ this contradicts Tg = 0. Consequently g = 0. Hence $Tf^+ = f^+$, i.e., $f^+ \in F$.

Since Bahadur's conditions directly imply our conditions, our result contains the result of Bahadur [3], who proved that a linear idempotent, selfadjoint, positive and constant preserving operator $T: L_2(\mathcal{C}) \to L_2(\mathcal{C})$ is a usual conditional expectation operator. It is easy to see that none of the five properties of T can be dispensed without compensation.

The following example shows, that it is not possible to weaken quasi-additivity to quasi-quasi-additivity (i.e., T(Tf + Tg) = Tf + Tg), even if we add

three other conditions which were often used by other authors, namely monotony, norm-continuity and Šidák's conditions, i.e.,

$$T(Tf \vee Tg) = Tf \vee Tg$$

(see [10, p. 271, Theorem 6]).

EXAMPLE. Let $\Omega = \{1, 2\}$, \mathscr{Q} be the power set of Ω and $P|\mathscr{Q}$ be the probability measure defined by $P(\{1\}) = P(\{2\}) = \frac{1}{2}$. We consider the case p = 2. We have

$$L_{2}(\Omega, \mathcal{Q}, P) = \{\alpha 1_{\{1\}} + \beta 1_{\{2\}}; \alpha, \beta \in \mathbf{R}\}.$$

For each $\alpha, \beta \in \mathbb{R}$ let

$$c(\alpha, \beta) = \operatorname{sign}(\alpha + \beta) \frac{1}{2\sqrt{2}} \frac{(\alpha + \beta)^2}{\sqrt{\alpha^2 + \beta^2}}.$$

Now define $T: L_2(\Omega, \mathcal{C}, P) \to L_2(\Omega, \mathcal{C}, P)$ by $T(\alpha 1_{\{1\}} + \beta 1_{\{2\}}) \equiv c(\alpha, \beta)$. Since $c(\alpha, \alpha) = \alpha$, $F = \{f: Tf = f\}$ is the set of all constant functions, i.e., $F = L_2(\{\emptyset, \Omega\})$. It is easy to see that T is a homogeneous, constant preserving, positive operator fulfilling Dykstra's condition. The last property immediately follows from $c(\alpha, \beta) \le \alpha + \beta$ which is equivalent to $P((f - Tf)^2) \le P(f^2)$ for $f = \alpha 1_{\{1\}} + \beta 1_{\{2\}}$ with $(\alpha + \beta) > 0$.

Moreover, T is idempotent, monotone, quasi-additive, fulfills Šidák's condition and is continuous. But all these properties cannot replace quasi-additivity in the preceding theorem, since T is not the projection onto F. The projection onto F is the usual conditional expectation given $\mathfrak{B} = \{\emptyset, \Omega\}$, i.e.,

$$P_2^{\mathfrak{B}}(\alpha 1_{\{1\}} + \beta 1_{\{2\}}) = \frac{1}{2}(\alpha + \beta).$$

REFERENCES

- [1] T. Ando, Contractive projections in L_p-spaces, Pacific J. Math. 17 (1966), 391-405.
- [2] T. Ando and I. Amemiya, Almost everywhere convergence of prediction sequence in L_p (1), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965), 113–120.
- [3] R. R. Bahadur, Measurable subspaces and subalgebras, Proc. Amer. Math. Soc. 6 (1955), 565-570.
 - [4] R. G. Douglas, Contractive projections on an L₁-space, Pacific J. Math. 15 (1965), 443-462.
- [5] R. L. Dykstra, A characterization of a conditional expectation with respect to a σ -lattice, Ann. Math. Statist. 41 (1970), 698-701.
 - [6] D. Landers and L. Rogge, On linearity of s-predictors, Ann. Probability (to appear).
- [7] S. C. Moy, Characterization of conditional expectation as a transformation on function spaces, Pacific J. Math. 4 (1954), 47-63.
 - [8] J. Neveu, Discrete-parameter martingales, North-Holland, Amsterdam, 1975.
- [9] J. Pfanzagl, Characterizations of conditional expectations, Ann. Math. Statist. 38 (1967), 415-421.
- [10] Z. Šidák, On relations between strict-sense and wide-sense conditional expectations, Theor. Probability Appl. 2 (1957), 267-271.

FACHBEREICH STATISTIK, UNIVERSITÄT KONSTANZ, D-775 KONSTANZ, WEST GERMANY