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ON THE VANISHING OF THE DUAL STIEFEL-WHITNEY

CLASSES OF ORIENTABLE MANIFOLDS

STAVROS papastavridis

Abstract. We will determine for which values of n and k the dual

(n - fc)-Stiefel-Whitney class of all orientable n-manifolds vanishes.

Introduction. Let w¡ E H'(BSO; Z2) be the mod-2 /-dimensional Stiefel-

Whitney class and let W¡ E H'(BSO; Z) be the integral /-dimensional

Stiefel-Whitney class, which is defined only for / odd and i > 2. By "mani-

fold" we mean a compact, closed C °° manifold. If M is an oriented manifold,

then w¡(M) and W¡(M) are the Stiefel-Whitney classes of the normal bundle

of the manifold (i.e., the dual Stiefel-Whitney classes of the manifold). In [3],

Massey and Peterson found sufficient conditions on i, so that w¡(M) =

W¡(M) = 0 for all «-dimensional orientable manifolds, for a fixed n. In the

same paper they raise the question whether their condition is necessary too.

In this note, we prove that this is really the case.

Our main results are the following two theorems.

Theorem 1. There exists an orientable n-manifold M such that wn_k(M) ^

0, if and only if there exist nonnegative integers a^a^ . . ., ar which satisfy the

following conditions:

(a) ZjOj = k,

(b) ZjVaj = n,

(c) ax is even,

(d) if a0 = 0, then the first nonzero a¿ and its immediate successor aj+x must

be even,

Theorem 2. There exists an orientable n-manifold M such that rVn_k(M) ¥=

0 for n — k odd, if and only if there exist nonnegative integers a0,ax, . . . ,ar

which satisfy the following conditions:

(a) 2,0, - k + 1,

(b) IjVaj = n,

(c) ax is even,

(d) if a0 = 0, then the first nonzero a, and its immediate successor aJ+x must

be even,

(e) 1 <ar < k + 1.
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The "only if part of the above theorems was proved in [3] by Massey and

Peterson, so we will restrict our attention to the "if part of the theorems.

Theorem 2 follows immediately from Theorem 1 and the following lemma.

Lemma 3. Let n,k be positive integers such that k < «. Let us assume that

there exist nonnegative integers b0,bx, . . . ,bs such that

(a) Ijbj = k + l,
(b)Z,24»y = «,
(c) bx is even,

(d) if b0 = 0, then the first nonzero bj and its immediate successor bJ+x must

be even,

(e) 1< b, < k + 1.
Then there exist nonnegative integers a0,ax, . . ., ar such that

(a') 2,a,. = A:,

(b') 2,2^. = «,
(c') ax is even,

(d') if aQ = 0, then the first nonzero ö, and its immediate successor aj+x must

be even.

Proof. Given b0,bx,.. ., bs satisfying conditions (a)-(e), then we define

a, = bjr for 0 < / < s — 1 and as = bs — 2, as+, = 1.

Proof of Theorem 2. The "only if" part of the theorem was proved in [3].

As for the "if" part of the theorem, let us assume that conditions (a)-(e) are

satisfied. Then, by the previous lemma, conditions (a)-(d) of Theorem 1 are

satisfied, so there exists an orientable «-manifold M such that wn_k(M) ^ 0.

Since w„_k is the mod-2 reduction of Wn_k, it follows that Wn_k(M) ¥= 0.

In order to prove the "if" part of Theorem 1, we will use the results of

Brown and Peterson [1]. The following proposition follows from Theorem

(4.4) of [1].

Proposition 4. The class wn_k(M) will vanish for all orientable n-manifolds

M, if and only if the following condition is satisfied:

The element x(S<l"~k)>k e H*(K(Z2, k); Z^, belongs to the image of the

map Sqx: H*(K(Z2, k); Z2) -» H*(K(Z2, k); Zf). (ik is the fundamental class

ofK(Z2,k).)

The main technical result of this note is the following.

Proposition 5. The element x(&7 ""*)'* does not belong to the image of the

map Sqx in H*(K(Z2, k); Zfj, if and only if, there exist nonnegative integers

a0,ax, . . ., ar, which satisfy the following conditions:

(a) 2,a, = k,

(b) 2,2^,. = «,
(c) a, is even,

(d) if a0 = 0, then the first nonzero a¡ and its immediate successor aj+x must

be even.
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Theorem 1 follows immediately from Propositions 4 and 5. The proof of

Proposition 5 will occupy the next section.

The cohomology of K(Z2, k). In order to prove Proposition 5, we will study

in some detail the mod-2 cohomology of the space K(Z2, k) and especially the

action of Sql. From now on, we assume that k > 0, the case k = 0 being

trivial.
First of all, we will need some results of Milnor about the mod-2 Steenrod

algebra A (see [4]). Let R = (rx,r2, . . ., r¡,.. . ) be a sequence of nonnegative

integers which are all zero except a finite number. Let SqR be the well-known

element of the Milnor basis (see [4, p. 162]). Following D. Kraines (see [2]),

we define the excess e(R) = r, + r2 + . . . . From Milnor's multiplicative

tables (see [4, p. 163]), the following two lemmas follow very easily.

Lemma 6. Let R = (rx,r2, . . .). Then

(a) ifrx is even, we have SqxSqR - Sqr>+X'r*r» —;

(b) ifrx is odd, we have SqxSqR = 0.

Lemma 7. Let m = M — 2, 2V, be a nonnegative integer. Then SqMSqR =

SqmR + Ij SqRj, where R = (rx,r2, ...), mR = (m, rx, r2, . . .) and e(RJ) >

e(mR).

Next we quote a result of D. Kraines.

Lemma 8. If e(R) > k then Sq\ = 0.

Proof. See Proposition 3 of [2].

The next statement is an immediate corollary of the two previous lemmas.

Corollary 9. Let R — (rx,r2, . . .), e(R) = k and let r, be the first nonzero

term of R. Then Sq\ = (Sqsik)2' where S = (rl+l, rl+2, r,+3, . . . ).

Proof. See Corollary 4 of [2].

Corollary 10. Let R = (rx,r2,. . .), e(R) = k and suppose that the first

nonzero term of R,rt, is odd. Let x = Sqr'+',r,+2' ■• ' (ik) and y = Sqr,-"r'+" ' • ' (ik).

Then

Sq'ix2'-2*) = x2' = Sq\.

Proof. By Lemma 6 and Corollary 9 we have Sq^ = x2. It follows easily

that Sqx(x2'~2y) = x2'. From Corollary 9, obviously x2' = Sq\.

Corollary 11. Let R = (rx,r2, . . .) e(R) = k and let us assume that the

second nonzero term rt+x of R is odd. Let x = Sq*'***** ' ' ' (ik) and y =

Sqr,+<~x-r'+2--(ik). Then we have Sq\x2'~xy) = x2' = Sq\.

Proof. By Lemma 6 we havç Sqxy = x, so Sqx(x2'~xy) = x2'. From

Corollary 9, it follows that x2' = Sq\.
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The next result describes the mod-2 cohomology of A(Z2, k) in terms of the

Milnor basis of the Steenrod algebra.

Definition 12. Let A = {Sq\: e(R) < k).

Proposition 13. H*(K(Z2, k); Z2) is a polynomial algebra with polynomial

generators of the elements of X.

Proof. In [5] Serre proved that the mod-2 cohomology of A(Z2, k) is a

polynomial algebra, with polynomial generators of all the elements of the

form Sq^'S^S^ • ■ ■ Sct-'ScHh), where /, > 2/2, j2 > 2j3,... ,/m_. >

2jm, and (/, - 2/2) + (j2 - 2/3) + • • • +(/m_, - 2/m) +/„, < k. From

Lemma 8 and Corollary 9, it is clear that every one of the generators of Serre

can be expressed as a polynomial of elements of A, so it is enough to prove

that the generators of Serre are as many as the elements of A. But that is easy

to see by corresponding to the generator of Serre SqJ'Sqj2 • • • SqJm(ik), the

element of X,  Sq^1-2^2'2'*.Jm-i~2Jm'i",(ik),  and this correspondence is

one-to-one.

Definition 14. Let Mx = {x2': x EX and t > 0}, and M2 = {all the

monomials of elements of A, which do not belong to A/,}.

Our last result, before the proof of Proposition 5, is the following: Let [A/,],

[M2] be the Z2-subspaces spanned by Mx, M2 respectively.

Lemma 15. Let m be a monomial of elements of X. Then Sqlm E [M2],

except for the following cases:

(a) m = SqRik, with R = (rx,r2, . . .), e(R) < k — 1 and rx even,

(b) m = x2''2)/, with xy E X and Sq\y = x2,

(c) m = x2'~\y, with x,y E X and Sq^ = x.

Proof. This is an easy corollary of Lemma 6 and Corollaries 9-11. We

dispose of all the other monomials by examining separately the following

cases:

Case l.mis monomial which contains more than two variables;

Case 2.m = SqRik, with 7? = (rx,r2, .. .), e(R) < k and r, odd;

Case 3.m = x°yb, with a,b > 1 and x ¥=y;

Case 4.m — x°y, with a > 1 and Sqxy is not a power of x;

Case 5. m = x°y, with a > 1, Sq[y = xJ and a + j ¥= power of two;

Case 6. m = xy, with Sqxx is not a power of v, and S^jy is not a power of

x;

Case l.m = xy, where Sqxx = y2.

It is assumed above, that x,y E X.

And now we come to our final goal.

Proof of Proposition 5. Milnor proved that x(Sq"~k) = 25çs, where the

summation extends over all sequences S = (sx,s2, . ..) such that 2(2^ — l)i,

= « - k (see [4, p. 168]). So, by Lemma 8, we have x(Sq"~k)ik = ^Sq%

where the summation extends over all sequences S = (sx,s2, . . .) such that

2(2/ — l)Sj = « — k and e(S) < k. Let us assume that there is a sequence of
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nonnegative integers satisfying conditions (a)-(d). Then, we define the

sequence T = (ax,a2, . . . , ar, 0, . . . ). Clearly e(T) < k, and we have e(T) =

k if and only if a0 = 0. Since the term SqTik appears in the summation

formula for x(Sq"~k)ik, it follows from the previous lemma and Lemma 6,

Corollaries 10 and 11, that x(Sq" "*)'* does not belong to the image of Sqx,

because it is one of the exceptional cases described in Lemma 15.
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