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ON THE DIMENSION OF PRODUCT SPACES

AND AN EXAMPLE OF M. WAGE

TEODOR C. PRZYMUSIÑSKI1

Abstract. Modifying a recent example obtained under the assumption of

the Continuum Hypothesis by Michael Wage, we prove, without any set-

theoretic assumptions beyond ZFC, that for every natural number n there

exists a separable and first countable space X such that:

(a) X" is Lindelöf and dim X" = 0;
(b) Xn + ' is normal but dim Xn+ ' > 0.

We obtain from this the following corollary. There exists a separable and

first countable Lindelöf space X such that:

(a) dim X = 0;
(b) X2 is normal but dim X2 > 0.

The space X instead of being Lindelöf can be made locally compact and

locally countable.

Assuming the Continuum Hypothesis (CH) Michael Wage constructed a

beautiful example of a strongly zerodimensional space A such that A2 is not

strongly zerodimensional, thus giving a consistent negative answer to a long

outstanding problem in dimension theory, namely, whether dim X X Y <

dim A + dim Y [W].

In this paper we modify his construction and prove, without any set-theore-

tic assumptions beyond ZFC, the following:

Theorem. For every natural number n there exists a separable and first

countable space X such that:

(a) X" is Lindelöf and dim X" = 0;

(b) Xn + X is normal but dim A"+1 > 0.

Corollary. There exists a separable and first countable Lindelöf space X

such that:

(a) dim A = 0;

(b) A2 is normal but dim A2 > 0.

Thus our theorem provides a "real" counterexample to the conjecture that

dim X X Y < dim A + dim Y in the class of normal spaces. The space X,
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instead of being Lindelöf, can be made locally compact and locally count-

able.

The author wishes to point out that the basic idea used in the proof of our

theorem is the same as in [W] and belongs to M. Wage. We avoid the

assumption of CH by: (1) replacing Kunen's technique originally used by M.

Wage by a technique invented by van Douwen [vD], and (2) an appropriate

application of methods developed by the author in [P] which involve the

notion of «-cardinality [P,]. These methods are also crucial to ensure the

normality of X2 (or Xn+l) and the Lindelöfness of X". (We note that the

method suggested by M. Wage in [W] to make the square X2 of his space X

normal was incorrect.)

Let us recall that for a nonempty normal space X: dim X = 0 iff Ind X =

0 iff any two disjoint closed subsets of X can be separated by a closed-and-

open subset of X. Spaces having this property are also called strongly

zerodimensional. Every zerodimensional Lindelöf space is strongly zerodi-

mensional (cf. [E]).

A real-valued function /: X -» R is upper (resp. lower) semicontinuous if for

every r E R the set/-'((- oo, r)) (resp.,/-x((r, oo))) is open in A'. A function

which is either upper or lower semicontinuous is called semicontinuous.

For a real-valued function g: Im —> R, where / is the unit interval, by a

g-topology on Im we shall understand a topology generated by the metric d

defined by d(x,y) = \x -y\ + \g(x) - g(y)\, for x,y G Im. Clearly the

g-topology is finer than the natural topology on Im. Sets open in the

g-topology will be called g-open, those closed in the g-topology g-closed, etc.

By A c Im we shall denote the diagonal in Im and we shall often identify /

with A using the natural correspondence x «-* (x, x,... ). By ©"_, X¡ we

denote the topological sum of spaces X¡.

M. Wage proved [W] the following lemma.

Lemma 1. There exists an upper semicontinuous function f: I -» / suchthat

( 1 ) / - ' ( 1 ) is uncountable ;

(2) every nonempty j-open subset oj I disjoint jrom f~x(0) has an uncountable

j-boundary.

Our theorem is an easy consequence of Lemma 1 and the following lemma

which seems to be interesting in itself.

Lemma 2. For every natural number n and every semicontinuous junction j:

1 -» I there exist topologies t,, t2, . . ., t„+, on I finer than the natural topology

on I and such that the space X = © "¡11(1, r,) satisfies the following three

conditions:

(3) X" is first countable, separable, strongly zerodimensional and Lindelöf;

(4) Xn+ ' is normal and nonparacompact;

(5) the topology t = IT**,1 t, on In+X restricted to A c I"+l is finer than the
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f-topology on A, but at the same time for any A, B c A, if \A* n B*[ > to, then

\ÂT n BT\ = 2" = c.

Let us notice that for an arbitrary continuous mapping /: 7 -» 7 Lemma 2

immediately yields a Lindelöf space A such that A2 is normal but not

paracompact. The first "real" example of such a space was obtained in [P].

Basically, Lemma 2 says that for a given semicontinuous function/there exist

"decent" topologies t, on 7 such that the subspace topology induced on A by

the product topology t on 7"+1 is very "close" to the/-topology on A (thus, if

the /-topology is "bad" then so may be t).

Let us first derive our theorem from Lemmas 1 and 2. Take an arbitrary

«, / as described in Lemma 1 and the space X guaranteed by Lemma 2. It

suffices to verify that dim An+1 > 0 and to this end it is enough to show that

the subspace A of (7"+1, t) is not strongly zerodimensional. We shall show

(cf. [W]) that closed subsets /~'(0) and/~'(l) of A cannot be separated by a

closed-and-open subset of (A, t).

Suppose that U is a closed-and-open subset of (A, t), /~'(0) c U and

/-i(l) n u = 0. Since UT n A\ If = 0, by (5) the set F = Uf n A\ Uf is

countable. Thus by (1) the /-open set W = A \ Üf D A \ (U u F) is non-

empty. By (2) FrfW is uncountable, but Fr^W c F, which is a contradiction.

Proof of Lemma 2. Let /: 7 -^ I be a semicontinuous function on 7.

Without loss of generality we can assume that / is upper semicontinuous. In

order to simplify the construction we shall also assume that n = 1 ; the proof

of the general case is completely analogous.

By a result of Baire (see [E, Problem 1.7.15 (c)]) there exists a sequence

{/l/nl^-i of continuous real-valued functions/,/„: I -* R such that:

(6)/(x) < fx/(n+X)(x) < fx/n(x), for x E I and « = 1, 2, ... ,

(7) limx/„^0fl/n(x) = f(x), for every x E I.

Using functions/,/„ one easily defines a family {/(}(e(0il] of continuous

real-valued functions/: 7-» R satisfying the following three conditions (just

define/ as a suitable linear combination of functions fx/n and/1/i(n+1), if

l/(« + 1) < t < l/n):

(S)f(x) < f,(x) < fs(x), for t < s and x E I;

(9) lim^o/^x) = f(x), for every x E 7;

(10) the family {/,},6(u, ij is continuous with respect to t, i.e.,/o = lim,^/,

(pointwise or-equivalently-uniform), for t0 E (0, 1].

Let us define a function g: I2 -» 7? by the following formula:

Í /(*)- if x = v,

g(*'^      [ max^^i (x),f]x_A (y)),     ilx^y.
■

One easily checks that g has the following properties:

(ll)g(x,x)=f(x);

(12) g is upper semicontinuous;
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(13) for any open K c F the set g~'(F)\A is open in I2 (in particular,

g|/2 \ A is continuous);

(14) for every x E I the open subset Gx = g~x((f(x), oo))\ A of I2

contains all points (u, v) E I2 such that u i= v and either u = x or v = x.

By (11) the g-topology on A coincides with the/-topology on A; by (13) the

g-topology on I2 \ A coincides with the natural topology on I2 \ A and (12)

implies

(15) for every (x, x) E A and its g-neighbourhood W there exists an open

neighbourhood ¡J of (x, x) in I2 such that U n Gx C W.

Indeed, there exist r, s E R such that r < f(x) < s and an open

neighbourhood V of (x, x) in I2 such that V n g~\(r, s)) c W. For U = V

n g~ x((- co, s)) we have

i/n G, c Kng-1((-oo,î))ng-|((r, + «)))= F n g-1«'.*)) c w.

Let us recall that the 2-cardinality [P,] of a subset >1 c 72 is defined by

(16) |j4|2 = max(|F|: B e A and x n y =0, for x,y E B, x ¥= y), where

x = {xx, x2) c /, for x = (xx, x2) G I2, and that

(17) \A\2 = min{|5|: S c / and A c S x / u / x S), provided that |^|2

is infinite.

Since / with the/-topology is homeomorphic to a Borel subspace of I2 (the

graph of j) every /-closed uncountable subset of / has cardinality continuum

(see [Ku, §31, VII, Theorem 1 and §37, I, Theorem l]).2 This, together with

(13) and Theorem 1 from [P,], easily implies that

(18) every 2-uncountable g-closed subset of I2 has 2-cardinality continuum.

Arguing as in the proof of Theorem 2 from [P„] one proves that there exist

disjoint subsets C0, C„ C2 of / such that / = C0 u C, u C2 and

(19) \C2 n F|2 = c, for every/ = 0, 1, 2 and every 2-uncountable g-closed

subset F of I2.

Let -< be an arbitrary well-ordering of / of type c. For / = 1, 2 we shall

construct a topology r¡ on / so that the following five conditions are satisfied:

(20) points from C, have a local base consisting of open intervals (with

respect to the usual ordering of /);

(21) every point has a countable local base consisting of closed subsets of /;

(22) the topology t = t, x t2 on I2 is finer than the g-topology on I2;

(23) for any A, B c I2, if \A~g n F*|2 > a, then | JT n BT\2 = c;

(24) for every x E I the set (( v, v) G A: v =< x] is open in (A, t).

Let us first show that topologies t, fulfill the requirements of Lemma 2, for

n — 1. Since the g-topology is finer than the natural topology on 72, condition

(22) implies that topologies t, are finer than the natural topology on /. Let

X, = (I, t,) and X = Xx® X2. By (21) the space X is first countable and

zerodimensional, hence regular. To see that X is Lindelöf it suffices to use

(20) and observe that, by (19), for every i — 1, 2 the complement / \ U of any

2This was pointed out by R. Pol.
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open subset U of 7 containing C, is countable. Since X is Lindelöf and

zerodimensional it is strongly zerodimensional.

The normality of A2 follows from (22), (23) and (20). It suffices to show

that for every /',/ = 1, 2 the space Y = Xi X Xj is normal. If i — j then by

(20) Y is Lindelöf, because in virtue of (19) the complement of any open

subset U of 72 containing C2 is 2-countable and thus Lindelöf. To show that

the space Z = A, X A2 is normal, choose disjoint closed subsets A, B of Z.

By (23) the g-closed set F = Ag n Bg is 2-countable and thus Lindelöf.

Using this and (22) it is easy to construct an open covering {t/m}~_, of Z

such that for every m either U^ n A =0 or U^ n B =0, which proves the

normality of Z and of A2 (cf. [vD] or [P]).

The space A is also «,-compact.3 Indeed, let A be an uncountable subset of

Z and B a g-dense countable subset of A. By (23), since Bg n B8 = Bg d A

is uncountable, the set BT is uncountable, which shows that A is not discrete

(cf. [vD]). Thus A2 is w,-compact and as (24) implies that A2 is not Lindelöf,

it cannot be paracompact. Condition (5) of Lemma 2 follows immediately

from (23) and (11).

In order to simplify the construction, topologies t, that we are about to

define will not be separable, but this can be easily corrected by choosing a

countable /-dense subset D of 7 and requiring that every open in t,

neighbourhood of a point x E I contain a "tail" of an /-convergent sequence

of points of D.

It remains to construct topologies t, on 7 so that conditions (20)-(24) are

satisfied. For every x E I let I(x) = { v E 7: v K x) and let {(As, Bs))s<c be

the collection of all pairs (As, Bs) of countable subsets of 72 such that

\Af n Bg\2 > w. We can assume that every such pair appears continuum

many times in the sequence {(As, Bs)}s<c. For every s <c there exists a

qs E I such that As u Bs c I(qs)2- Using (18) and (19) one can construct (cf.

[P]) a transfinite sequence {p(s))s<c of points p(s) = (px(s),p2(s)) of 72 such

that:

(25)p(s) E Ag n Bf andp(s) c C0;
(26)p(s) n p(t) =0, if s =t /;

(27)p(s) n I(qs) =0.

Let d be the metric on 72 generating the g-topology on 72, i.e. d(x, y) = \x

~ y\ + \g(x) ~ g(y)\- By transfinite recursion on 7 we shall define for every

x E I and /' = 1,2 bases (5¿(x)}*_, of neighbourhoods of x in t„ so that the

following conditions are satisfied:

(28) sets Bk(x) are closed subsets of 7 and B'k+X(x) c Bk(x);

(29) for every x E 7 the ¿-diameters of sets Bk(x) = Bkx(x) X B¡(x)

approach zero when k -> oo ;

(30) Bx(x) n A c {( v, v) E A: v < x), for every x E I.

Suppose that x E I and that such bases of neighbourhoods have been

3That is, every discrete closed subset of X is countable.
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constructed for v < x. We consider three different cases:

(a) x G C¡ for some / = 1, 2 or x G C0 and x = p¡(s), for some s < c, but

Px(s) * Pii^

(b) je G C0 and jc ̂  p,(s), for every / = 1, 2 and s < c;

(c) je G C0 and * = px(s) = p2(s), for some s < c.

ad (a). We define Bk(x) to be an arbitrary closed interval of length <\/k,

containing x, with endpoints from C3_, and we make sure that Bk+X(x) c

B¿(x). We also put Bk~'(x) = {x), for every k.

ad (b). We define Bkx(x) = Bj;(x) = [x], for every k = 1, 2,....

ad (c). From (25) it follows that (x, x) G Af n Bf and thus using (14) it is

not difficult to construct a sequence {(xm, vm)}"_, of points of I2 such that

d((xm,ym), (x, x)) < \/m, (xm,ym) E As, if m is even, (xm,ym) G B„ if m is

odd and (xm,.yn) G G,., if m ¥^ n. There exist open in / neighbourhoods Um

and Vm of points xm and ym, respectively, such that Um X K„ c Gx, if m =£ n

and(UmX FJnA=0,ifx„I*vm.

By (27), for every m we have xm < x and ym < x and therefore the

inductive hypothesis, (29) and (13) imply that for every m there exists a km

such that xm G Bk\(xm) c Um, ym E B^yJ c Vm and the ¿-diameter of

BlSxm) x Blm (ym)is less than 1/ffi. We put

Bx(x) = {x) u U   <(0   and   F2(x) = {x} U U   <(^)-
m>k m>k

One easily checks that the above described systems of neighbourhood bases

are well-defined and that conditions (28)-(30) are satisfied (to prove (29) use

(15)). Let us briefly verify that the topologies t, determined by these systems

of bases fulfill the requirements of (20)-(24). Clearly (20) and (21) are

satisfied; (24) is an immediate consequence of (30); (22) follows from (29)

and (132f and (23) is implied by the fact that for every s < c we have

p(s) E A¡ n Bf, where t = t, X t2. This completes the proof of Lemma 2

and of our theorem.   □

Comments. (1) It is known that for normal spaces Z, dim Z = 0 iff

Ind Z = 0, thus in our theorem we also have Ind X" = 0, but Ind Xn+i > 0.

(2) After the result presented in this paper was obtained, M. Wage

informed the author that he was able to construct a "real" example of a

Lindelöf space X and a separable metric space Y such that dim X = dim Y

= 0, but dim X X Y > 0. From [K] it follows however that the product

space X X Y cannot be normal.

(3) It is easy to verify that actually our space X satisfies dim X2 = I.

Added in proof. M. B. Charalambous pointed out that the space X2 from

our Corollary can also serve as an example of an AT-compact space which is

not strongly zerodimensional. First example of such a space was obtained by

S. Mrówka.



dimension of product spaces and example of wage 321

References

[vD] E. van Douwen, A technique for constructing honest locally compact submetrizable examp-

les, preprint.

[E] R. Engelking, General topology, PWN, Warsaw, 1977.

[K] Y. Kodama, On subset theorems and the dimension of products. Amer. J. Math. 91 (1969),

486-497.

[Ku] K. Kuratowski, Topology, vol. I, rev. ed., Academic Press, New York, London; PWN,

Warsaw, 1966.

[P] T. Przymusinski, Normality and paracompactness in finite and countable Cartesian products,

Fund. Math. 105 (1979).
[P,]_, On the notion ofn-cardinality, Proc. Amer. Math. Soc. 69 (1978), 333-338.
[W] M. Wage, 77ie dimension of product spaces, preprint.

Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8 Warsaw, 00-950
Poland


