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ALEXANDROFF ALGEBRAS AND COMPLETE REGULARrTY

GEORGE REYNOLDS

Abstract. We characterize lattice theoretically the topological notion of

complete regularity and study the implications of this characterization in the

setting of local lattices (= complete distributive lattices).

In this paper, we will give a lattice theoretic characterization of complete

regularity. Normality, compactness and paracompactness among others, have

been considered from the point of view of lattice theory, and since they make

no reference to the points of the space they can be translated almost verbatim

into the language of the theory of lattices. Complete regularity is awkward on

two counts: not only does it mention the points of the space explicitly, it

involves directly the real numbers. However with a maneuver inspired by the

work of A. D. Alexandroff we will derive a characterization which makes no

reference to the points of the space or the real numbers. An analogy can be

made with paracompactness-this notion is defined in a lattice theoretic

manner and has a well-known characterization involving real valued func-

tions. Frink [3] has a characterization of complete regularity which avoids

mention of the real numbers but involves the points of the space directly in

the characterization. Moreover his proof appeals to the existence of ultra-

filters by way of a Wallman compactification. The proof of our Theorem 1.4

appeals only to a variant of Urysohn's lemma which was proved in [13].

We draw the attention of the reader to [12] which characterizes complete

regularity from another point of view. In Theorem 1.6 we will show that this

result can be extended to any local lattice (= complete distributive lattice)

which is completely regular. In §2 we show that the familiar construction of

the Baire sets can be extended to this lattice theoretic setting also.

1. Alexandroff algebras.

1.1 Definition (see [8]). A local lattice L is a complete lattice which

satisfies the identity x A (\Zya) = V (x A ya) for any family {ya) C L. A

homomorphism of local lattices is a function which preserves finite meets and

arbitrary joins.

Observe that if A and Y are topological spaces then the open subsets of X

and Y form local lattices, 0(A) and Q(Y), respectively, and the continuous

functions from A to y are in bijective correspondence with the homomor-

phisms from 6 ( Y) to 0 (A) provided A and Y are sober (see [9]).
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1.2 Definition (see [1], [6], [13]). A lattice L is a a-lattice if L has countable

joins and satisfies the identity x A (Vva) = V (■* A va) for all countable

families (ya) <Z L. An Alexandroff algebra is a a-lattice A with 0 and 1 which

satisfies the following two conditions:

(1) (normality) For all a and b in A, a\J b = 1 implies there exists u and w

in A with u /\w = 0, a\/ u = 1 and by w = 1.

(2) (implicit complements) To each a in A, there is a sequence (a,, b¡)

(i G a?) in A X A with b¡\/ a = 1, 6, A a, = 0 and Va, = a-

A homomorphism in Alexandroff algebras is a function preserving 0,1 finite

meets and countable joins. 6E will denote the category of Alexandroff alge-

bras.

1.3 Definition. A local lattice L is completely regular if L contains an

Alexandroff algebra A as a o-sublattice which generates L by unrestricted

joins. (We only note that by a-sublattice, we mean that the inclusion A Q L

preserves not only countable joins and finite meets, but 0 and 1 as well.)

Recall from [13] that every Alexandroff algebra is contained as a a-sublat-

tice of a local lattice L making L completely regular. We can now state the

main result.

1.4 Theorem. Let X be a topological space with 0 (A') the lattice of open sets.

Then X is completely regular as a space if and only if 0 (X) is completely

regular as a local lattice.

First observe that if X is completely regular as a space then the family

A = coz(;f) = [f~x(R - {0})|/ G C(X)} is an Alexandroff algebra (see [6]).

Hence it suffices to show that if 0 (X) is completely regular as a local lattice,

then X is completely regular. The key to this implication is a variant of

Urysohn's lemma. The precise statement follows and is proved in [13]. Recall

that for an Alexandroff algebra A, a real valued function on A is a homomor-

phism h: G(R)^>A.

1.5 Theorem. If A is an Alexandroff algebra and a G A, then there is a real

valued function h on A with h(R — {0}) = a.

We can now complete the proof of Theorem 1.4. Let A be an Alexandroff

algebra which makes 0 (A') completely regular. We will show that for every

U G 0 (X) and x E U there is a continuous function/: X -» R with/(x) ¥= 0

andf\x_ ^ = 0. Since A generates 0 (X), there is a W G A with x G W Ç U.

By Theorem 1.5, there is an A: 0(F) -+A with h(R - {0}) = W. To obtain

the function/we proceed as follows: if t E X, then

% = [U E 6(R)\t G h(U))

is a prime ideal of open sets in R, closed under countable union. Hence

Uf, = Ä- [fit)} for some unique point/(/)• This defines/: X -> R. If U is

open in R,f(t) G U if and only if U G 9,. Thus,

rx(U) = {t\f(t) E V) - {t\U É %) - [t\t E h(U)) = h(U),
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so / is continuous. We deduce that W = h(R - {0}) =/"'(R - {0}), so

fix) ¥= 0 and/|jr_ v = 0. This completes the proof.

Let us say that a a-sublattice A contained in a local lattice L is dense if

every element of L is a join of elements of A, and denote by coz(L) the

a-sublattice of L given by {f(R - {0})\f: 0(7?)->L}. The next result

follows easily from Theorem 1.5.

1.6 Corollary. A local lattice L is completely regular if and only if cotíL) is

dense in L.

We will now show that a theorem of Mulvey (see [12]) characterizing

complete regularity in the case of "spatial" local lattices extends to our more

general setting. The proof we give is just a variation of Mulvey's proof, which

shows that any reference he makes to the points of the space can be avoided.

If L is a local lattice, Mod¿ RL will denote the category of RL modules in

the category sh(L) of sheaves on L (see [9]), with L being given the canonical

topology. RL denotes the Dedekind real numbers in sh(L).

1.7 Theorem. Rl is a generator in ModL RL if and only if L is completely

regular.

We will follow Mulvey's notation and write

R"L(v) = {«: 0(7? ) -* L A v\h(R - {0}) ç v A «}•

Rl is a submodule of RL, and the assumption that RL is a generator implies

that © B RLMZ(f) -* RL is an epimorphism where the direct sum is taken over

the set

B = (cos(/)|cos(/) < «,/: 0(7? ) -* L).

Let lu be the identity in the ring R£(u) = RL(u). The fact that m is an

epimorphism implies that there is a cover {ua) of u and i„ 6 © A^-^uJ

with q>(ta) = 1J . Therefore each ua is contained in some coz(/) < u, so

" = V "„ < Vb coz(/), hence VB coz(/) = "•

Conversely suppose that L is completely regular. Let <p: M -» A be a map

of RL modules with the property that <p,: A7(l) -» A(l) is a surjection. We are

to show that for any u E L and t E N(u), there is a cover {ua} of u and

ta E M(ua) with <p(ta) ■» /| . The open cover required is supplied by the

family of cozero sets (coz(/)|coz(/) < u) since L is completely regular.

Indeed, we may assume that each/has the property that /| „ • / E N(u) can be

extended to a global section: set gn = (\f\\/ I/n) - I/n, and note that

0 E N(f({x\ |x| < 1/«})) and g„|„-1 E A(«) agree on/({x| \x\ < 1/«}) A

u. Then observe that V„ coz(g„) = cozi/)-

Now if gk = 2(((rc|/| A f> V \) - $), k S A, gk\u ■ t can be extended to a

global section hk and for sufficiently large k, g^^ • t]^ = t]^ where vk =

f({x\ \x\ > l/k)). Thus if sk E Af(l) with <p(sk) - hk, then j^ E M(t>*) is

the desired collection.
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1.8 Corollary. If A is an Alexandroff algebra then RA is a generator in the

category oj RA modules in sh(v4), A being given the Grothendieck topology oj

"countable covers" (see [13]).

This follows since A is dense in the local lattice L of subobjects of 1 in

sh(A), so L is completely regular.

2. Baire sets. An important construction in measure theory associated with

any completely regular space is that of the Baire sets, the a-algebra generated

by the cozero sets. This is a construction which also has the appearance of

depending on the points of the space, in particular the construction is carried

out inside the power set of X. We will show that to every Alexandroff algebra

A there is a naturally associated a-complete boolean algebra which has every

right to be called the Baire sets generated by A. Precisely:

2.1 Theorem. The category oj a-complete boolean algebras is ajull reflective

subcategory of the category of Alexandroff algebras, and the reflection functor

applied to the cozero sets of a topological space X yields exactly the Baire sets of

X.

That the inclusion functor from a-complete boolean algebras to

Alexandroff algebras has a left adjoint is a standard (and very general)

application of the general adjoint functor theorem, and we shall omit the

details. For any Alexandroff algebra A, let 9>(A) be the a-complete boolean

algebra obtained by the above process. If X is a topological space, let tj:

co7i(X)-> ®(coz(Ar)) be the front adjunction map, /: cozfJQ-* %a(X) the

inclusion of coz^) into the Baire sets of X, j: <ä (coz(A"))-* %a(X) the

unique homomorphism of a-complete boolean algebras insured by the

adjointness. Then the image of/ is a a-complete boolean algebra containing

coz(Ar), so / is onto. Let ®0 = tj[coz(X)] and let Bx, X < «„ be the usual

"Borel" hierarchy obtained inductively from 9>0 by taking complements and

countable unions. Note that

U   % = ®(coz(A-))
A<fa>|

since as a a-complete subalgebra of ® (coz^)), U \<u ^x satisfies the same

universal property that <$> (cozj(X)) satisfies. Now observe that •$„ has the

following property:

(*) If a or ac (the complement of a) is in "&„, then/(a) = 0 implies a = 0.

We shall prove by induction that (*) is true when ®0 is replaced by "Sx for

all À < «,. This will clearly show that the kernel of/ is 0, so/ is 1-to-l.

If •$„ has the property (*) for a < X and X is a limit ordinal then (*) is

obviously true of 6&A. If X = a + 1, and ¿> G <SA, then b = Ul6u a¡ where a,

or af E "Sa. Thus j(b) = 0 implies j(a¡) = 0 for all /, hence by the induction

hypothesis, a¡ = 0 for all /, so b = 0. This completes the proof.

Since the map from A —> <$>(A) is a monomorphism and preserves count-
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able joins, standard techniques from measure theory can be applied to obtain

the last result whose proof we leave to the interested reader.

2.2 Theorem. Let A be an Alexandroff algebra. If ¡i: A -> [0, 1] is a function

which satisfies

(a) p(a V b) = jn(a) + p(b) if a Ab = 0, and

(b) /i(Vjr a,-) = sup,: p(a¡)  whenever ai < ai+l,  then  u  can  be  extended

uniquely to a countably additive measure on 'S) (A).
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