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THE COHOMOLOGY OF THE PROJECTTVE «-PLANE1

WILLIAM A. THEDFORD

Abstract. An //-space is a topological space with a continuous multi-

plication and an identity element. In this paper A" has the homotopy type of

a countable CW-complex with integral cohomology of finite type and

primitively generated k-cohomology, k a field. The projective n-plane of X

is denoted XP(n). The main results of this paper are: Theorem 1 which

states that H*(XP(n)) — N © S where AT is a truncated polynomial algebra

over k and 5 is a trivial k-ideal, and Theorem 2 which considers the case

k = Z(p) and states that H*(XP(n)) - Ñ © S where TV is a truncated

polynomial algebra on generators in even dimensions and S is an A(p)-sub-

ajgebra of H*(XP(n)) so that an y4(/>)-algebra structure can be induced on

N. These theorems extend results by A. Borel, W. Browder, M. Rothenberg,

N. E. Steenrod, and E. Thomas.

0. Introduction. An 77-space is a topological space with a continuous

multiplication and an identity element. In [10] Stasheff defined the projective

«-plane of an 77-space. In this paper A has the homotopy type of a countable

CW-complex with integral cohomology of finite type and primitively generat-

ed ¿>cohomology, k a field. The two main results of this paper pertain to the

cohomology of the projective «-plane, XP(n), of an 77-space, A. Theorem 1

states that

77*(AP(«)) = N(m)®S

where A(«j) is a truncated polynomial algebra over k and S u H*(XP(n))

= 0. Theorem 2 considers the case k = Z(p) and states that

77*(AP(«)) = N(n)® S

where A is a truncated polynomial algebra on generators in even dimensions

and S is an A (/?)-subalgebra of H*(XP(n)) so that an A (//)-algebra structure

can be induced on A. In a subsequent paper Theorem 2 will be used to study

the action of the Steenrod algebra, A(p), on H*(XP(n), Z (/>)), and

77*(A, Z(p)).

In [2] William Browder and Emery Thomas studied the Z(2)-cohomology

of XP (2), and in [3] it was pointed out that Borel's methods can be used to

obtain the Z (/?)-cohomology of AP(oo) when it exists (if and only if the

space has an associative multiplication [10]). Steenrod and Rothenberg
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studied H*(XP(n)) for associative //-spaces in [9]. Theorems 1 and 2 extend

the results of [2], [3], and [9] by considering XP(n), n > 2, for //-spaces other

than topological groups.

1. Main results. We begin with some notation. If V is a graded vector space

over the field k, then Vo and Ve will denote the subspaces of odd and even

dimensional elements respectively. The free commutative algebra generated

by Fis

U(V) = K(V°)®k(Ve)   if char k ^2

and

U(V) = k(V)   if char A: = 2.

The exterior algebra is denoted by A and k(V) is the polynomial algebra. Let

U(V/t) be the truncated algebra of height / generated by V.

An ^„-structure on X, [10], is a quasi-fibration

p„: (E(n), E(n - 1), . . ., X) -* (XP(n - 1), XP(n-2),..., *)

with fiber X. The space E(m) = X ° m ° X is the m-fold join of X, [7], with

the usual inclusion into E(m + 1), and XP(m) = cPm the mapping cone of pm

which isp„ restricted to E(m). Let Tm denote the vector space of primitive

elements of H*(X) which are transgressive in the quasi-fibration

X^E(m)%XP(m- 1).

The set x = (x,}7 is a vectorspace basis for Tm. Let v, G H*(XP(m — 1)) be

a transgression of x¡ and GHm = {y¡}¡. The mapping cone of pm is XP(m) and

there is the exact cohomology sequence

...^H"-x(E(m)) ^Hn(XP(m))J^Hn(XP(m- 1))

"XH»(E(m))U...,

j the inclusion of XP(m - 1) into XP(m). Since p*(y¡) = 0, choose z, G

H*(P(m, X)) to be such that/*(z,) = y¡ and % = {z,},. The element z(. will

be called a (m + l)-transgression of x¡. Set N(m) = U(Z/m + 1).

Theorem 1. If H*(X) is primitively generated and XP(m) is defined, then

there exists a trivial k-algebra S such that as k-algebras

H*(XP(m)) s N(m)®S.

More specific results are possible if it — Z (p), p a prime. Let / be the ideal

of A^m) generated by the odd dimensional elements of N(m) and N(m) the

subalgebra generated by T, then N (m) = N(m)@ J. Define S = S © J.

Theorem 2. If H*(X) is primitively generated, k = Z(p), and XP(m) is

defined, then S is an A (p)- module and there is the vector space isomorphism

H*(XP(m)) s N(m)@ S

so that it is possible to induce an A (p)-algebra structure on N(m).
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2. Proof of Theorem 1. Theorem 1 is proved by induction starting with

P(l, A) = SX, the reduced suspension of A. In [2] it was shown that the

primitive elements are the 1-transgressive elements of H*(X) so that Theorem

1 is immediately satisfied for this case.

Induction hypothesis: H*(XP(n — 1)) = A' © S' as in the theorem, where

A' is generated by % ' C H*(XP(n - I)), being constructed as % was above.

Since the «-transgressive elements are (n — l)-transgressive, we may choose

^'2 <%.
Let D be a subspace of H*(X) complementary to Tx = T and let % be a

basis for T. Since Hq(X) is finite dimensional as a vector space for all q, we

can choose a dual basis %' for 7* C 77t(A) such that if x¡ E % and

toj E %', then (x¡, w,) is 1 if / = j and 0 otherwise.

Lemma 2.1. There is an isomorphism f: 0"77*(A)-> H*(E(ri)) such that if

each x¡ is primitive and transgresses to z¡, then

8(f(xx®- ■■ ®x)) = 8(xx* ■■■   *xn)

= ±zx U • • • U z„.

The existence of an isomorphism is known from [7]. The formula is

obtained from a direct application of Theorem (2.4) of [15].

Letting fit, be the dual of /, /ft: 77,(71 («))— ®"HJ(X) is also an

isomorphism. Now define S" = f(S„) where S2 = (T ® D) + (D ® T) + (D

® D) and Si+X = (T+ D)® St. We then define S = 8(S').
We now show that S n A «■ 0 and that the products of less than « + 1

elements of Z are linearly independent. Let z E S n A. Since z E N, z =

2 u¡ jZ¡j where this denotes a finite sum, a,j E k, and

hi " z<(o u • • • u z/0)

is the product of/ elements of Z. For convenience it is assumed that the cup

product z, y is taken in such a manner that the indices are nondecreasing from

left to right. Since z EX, there is s E S' such that S (s) — z, and therefore,

j*(z) = 0. Observe that XP(n) is of category « + 1 so that zim = 0 for

m > n. Now j*(z¡) = y¡ E % so j*(z) = 2 a¡ jy¡ j. By the induction

assumption, a¡, = 0 for/ < n; hence, z = 2 a¡ jZ¡ j. By Lemma 2.1

¿v, = £/,„5 (*,-,„).       «/,„ = ±1.

where x,„ = xi(X) * • • •  * x,(n).  Let a = 2 £,,„a,,n^>n E H*(E(n)) so that

5(a) = 5(i) = z and 5 (a - j) = 0. Let c E H*(XP(n)) be such that/;*(c) =

a - s and define

»% =/rV/i) ® • • ■ ® >v,.(n)) = w,.(1) * • • •  * wJ(n).

Note that (xjn, w, „> is 1 if each ik = jk and is 0 otherwise. Let a = deg w((2)

and ß = deg wi(2). If x' = tv,„ - (-1)°%2) * wi(X) * • • •   * wl((l), then

<a - 5, x'} = <a, x'> - <j, x'> = <a, wM> - a,.„.
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Lemma 2.2. p+(x') = 0.

Hence, (a - s, x'} = (p*(c), x') = (c,p+(x')} = 0 for /, =£ i2 so that in

this case ain = 0. If deg z,(I) is odd,p ¥= 2 and /, = i2, then

zi(x) U zi(2) = -z,(1) u z/(2) = 0

so that z,■„ = 0.

Lemma 2.3. Let /, = i2. If p J= 2 and deg w/(1) is odd, or p = 2, then

P*("u) = o.

Hence, ain = 0 so that z = 0.

We next show that H*(XP(n)) = N + S.lîx E H*(XP(ri)), then/*(z) G

N' so/*(z) = S a¡jU¡ j. Let a = S ujA¡ G TV, then/*(z - a) = 0. Choose

s G H*(E(n)) so that S(s) = z - a. Now 8(H*(E(n))) Ç N + S and a G N

so z E N + S.

3. Proof of Theorem 2. Let F° be the linear subspace of H*(X) generated

by %° the odd dimensional elements of % and define D° to be the linear

subspace generated by D and 9Ce, the even dimensional elements of %.

Define U2 = (T° ® D°) + (D° ® T°) + (fl° ® Z>°) and Ui+X = (T° + D°)

® Î/,. Let r/' = f(U„). If L° is the linear subspace of H*(XP(n)) generated

by 2°, then S = L + S (if). Notice that since Â(p) is all in even degrees,

À(p)(T°) E T°. Now U + (T° ® • ■ ■ ® rS - ®"H*(X) and T°
® • • • <8> T° is an /i(p)-module. Hence, [/ has an .¿(p)-module structure

and consequently ô (/( U)) is an A (p)-module. Since the elements of A^ are all

of even degree and L is all in odd degrees, A(p)L Cx N = {0}. Hence, S is an

A (p)-module. By the Cartan formula, S is an A (p)-algebra.

4. Proof of lemmas. The proofs of Lemmas 2.1, 2.2, and 2.3 depend on the

definitions of E(n) and XP(n) described in §1.

Proof of Lemma 2.1. Consider the Mayer-Vietoris sequence

• ■ • H*(E(n)) UH*(E(n - 1)) © H*(X) ^H*(E(n - I) X X) ^ ■ ■ ■ .

The map 5 is an epimorphism since / = 0. Since Ker 8 = (H*(E(n — 1)) ®

k) + (k <8> H*(X)) ç H*(E(n - \)KX), it is immediate that

/„ = St,*: H*(E(n - \)AX) -> H*(E(n))

is an isomorphism where 17: X X X —> XAX is the quotient map. If for n = 2,

f = f2 and for « = k + 1, / = fk+¡(ifk ® 1), then / will be an isomorphism

for all n.

If w E H*(E(n - 1)) and x G H*(X), then w * x = 8(w ® x) G

H*(E(n)) as defined in [13]. By the way f„ was constructed, fn(w ® x) =

w * x. Hence, we conclude that

/(*,(,) ® • • • 9 *,(«)) = */(i) * • • •   * *,(«)

as required.
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Proof of Lemma 2.2. For « = 2 we have the Hopf construction p:

X o X -* SX. Let (A ° X, E, A') and (SX, M, C) be the usual decom-

positions of these spaces, so that p is a map of these triples. Recall that

p\X X X = m, the 77-space multiplication. Now consider the diagram below

H,(X)®Ht(X)

|/r'
^77.(A°A)

K
— H,(SX)

where m% is the Pontrjagin product. Let w/(1) and h>,(2) E TT^A), then since

the diagram is commutative,

pm(x') = a(m$(wKl), w,,2)) - (-\r*,****w*)m¿"*» »to))-

Now since H*(X) is primitively generated, Hj(X) has a commutative

Pontrjagin product, [8], andpj(w) = 0.

The proof can be completed by an induction argument using the fact that/;

is a map of triples.

Proof of Lemma 2.3. This is an induction argument very much like the one

above. Let w = >v,(1) = w((2). By the proof of Lemma 2.2, p^(w * w) = w2. If

the characteristic is 2, then w2 = 0 since 77t(A) has a commutative Pontrjagin

product. If the characteristic is not 2, then w is odd dimensional so that

w2 = - w2 = 0. Using the decomposition of E(n) and P(«, A) mentioned

above, an induction argument completes the proof of this lemma.
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