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PERIODIC AND FDŒD POINTS, AND

COMMUTING MAPPINGS

GERALD JUNGCK

Abstract. We employ commuting mappings to produce generalizations of

locally contractive and locally expansive maps, and obtain criteria for the

existence of fixed and periodic points of arbitrary maps on compacta.

1. Introduction. Our main result cites conditions which ensure that a map of

a compact metric space onto itself has periodic points. This one theorem

yields as by-products a necessary and sufficient criterion for the existence of

fixed points (Corollary 2.3), a generalization of results of Bailey [1] and

Holmes [3] on locally contractive maps, and a theorem on periodic points for

open and generalized locally expansive maps.

By the term map we shall mean a continuous function. A map /: (A, d) -»

(A, d) is locally contractive (expansive) iff there exists e > 0 such that

d(f(x),f(y))<d(x,y) ( > d(x,y)) whenever 0<d(x,y)<e. Maps /, g:

X -> A commute iff fg = gf. If g: X -» A, we let Cg denote the set of all maps

/: A -> A which commute with g. In addition, A denotes the set of natural

numbers, and for each « E A,/" denotes the «th composite off.

The fact that a function /: A —» A has fixed points iff there is a constant

function g: X —> X which commutes with / prompts the investigation of

commuting mappings in the search for fixed points (see [4]). Their potential

as a means of generalizing lies in the fact that, for any «, /" E Cg if / E Cg

(in particular, g" E Cg).

2. Main result and corollaries.

Theorem 2.1. Let g be a surjective map of a compact metric space (A, d) to

itself. Suppose e is a positive number satisfying the condition: if x,y E X and

0 < d(g(x), g(y)) < e then there is at least one f E Cg and z E g'x(g(x)) such

that

d(f(z),f(y))<d(g(x),g(y)).

Then g has a periodic point. In fact, if k is a positive integer such that, for some

x, d(x, gk(x)) < e, then a = gk(a)for some a E X.
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Proof. Let x G X. The sequence {g"(x)} has a convergent subsequence

since (X, d) is compact. Specifically, there exist k and m such that

d(gm(x),gm+k(x)) = d(gm(x),gk(g»>(x)))<e.

Thus:

(i) d(y, gk(y)) < e for some y G X.

Suppose that k G N for which (i) holds. Since the composite gk: X -> X is

continuous and (A', ¿/) is compact, there exists a G A' for which

(ii) d(a, gk(a)) < d(x, g\x)) for all x G X.

We assert that a = gk(a). Otherwise, (i) implies 0 < d(a, gk(a)) < e. But g

is a surjection, so that g(c) = a for some c EX, and we have

0 < d(g(c), gk(g(c))) = d(g(c), g(gk(c))) < 6.

Consequently, the hypothesis yields/ G Cg and z G g~\g(c)) such that

d{f(z),f(gk(e))) <d(g(c),g(gk(c))).

Since z G g"'(g(c)), g*(z) = gk(c), and hence

</(/(*)>/(**(*))) <</U(c),g(g*(c))).

But then

d(f(z),gk(f(z)))<d(a,gk(a))

since/ G Cg. This last inequality contradicts (ii).   □

Now let g be any map (not necessarily surjective) of a compact metric

space X to itself. If A = D^.ig^A'), then /I is compact, g(A) = ^4, and if

/ G Cg, then f\A G Cg|^. Thus, if we require that the z G g~\g(x)) in

Theorem 2.1 be x, we can apply 2.1 to g\A: A -» A to conclude:

Corollary 2.2. Let g be a map of a compact metric space (X, d) to itself. If

e is a positive number such that whenever 0 < d(g(x), g(y)) < e, there exists

j G Cgfor which

d(f(x),f(y))<d(g(x),g(y)),

then g has a periodic point. In fact, if k is a positive integer such that, for some

x G A = DT-xg "(X), d(x, gk(x)) < e, then a = gk(a)for some a EX.

The following fixed point theorem is stated without proof in [4].

Corollary 2.3. A map g of a compact metric space (X, d) into itself has a

fixed point iff g(x) ¥^ g(y) implies there is some f G Cg such that d(f(x),f(y))

<d(g(x),g(y)).

Proof. The necessity portion is easily proved by considering the constant

function fix) = a, where a is a fixed point of g (see the proof of the theorem

in [4]). To prove "sufficiency", let e = 2 diam(A'), note that d(x, g(x)) < e for

all x G X, and appeal to Corollary 2.2.
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3. Locally contractive maps generalized.

Theorem 3.1. Let H be a commutative semigroup of maps of a compact

metric space (A, d) to itself and let g E H. If t is a positive number such that

whenever 0 < d(g(x), g(y)) < e, there is some h E H satisfying

d(h(x),h(y))<d(g(x),g(y)),

then g and any finite subfamily of H have a common periodic point.

Proof. For « E 77 and k E N let P(h, k) = {x E X: hk(x) - x). These

sets are closed since « is continuous. Note also that f(P(h, k)) c P(h, k) if

/ E 77, since / and h commute. By Corollary 2.2 there exists m such that

P(g> m) ^ 0- Denote P(g, m) by Pg, and consider:

Lemma. Assume the hypothesis of Theorem 3.1, and let F be a nonempty

closed subset of Pg such that «(F) c F for all h E 77. If h E 77, « has a

periodic point in F.

Proof. Since Pg is closed, (F, d) is compact. Let « E 77 and apply the

initial argument of the proof of Theorem 2.1 to h\F to produce a E F and

k E A such that d(a, hk(a)) < e and

d(a, hk(a)) < d(x, hk(x))   for x E F. (*)

Suppose a =£ hk(a). Since a E Pg, gm(a) = a. Let c = gm~l(a). Then

d(hk(a), a) = d(hk(g(c)), g(c)) = d(g(hk(c)), g(c)).

Thus 0 < d(g(hk(c)), g(c)) < e, so by hypothesis there exists/ E 77 such that

d(g(hk(c)),g(c)) >d(f(hk(c)),f(c));

i.e., d(hk(a), a) > d(hk(f(c)),/(c)). But/(c) E F since a E F and hence c E

F; consequently, the last inequality above denies (*). Conclude that a =

hk(a).   D

We now complete the proof of Theorem 3.1. Observe that Pg is a nonempty

closed subset of Pg such that h(Pg) c Pg for h E 77. The Lemma therefore

yields k = k(h) for each h E 77 such that Pg n P(h, k) ¥= 0. Thus any

singleton subset of H has a periodic point in common with g. We proceed by

induction.

Let {«,, «2,.. ., «„, «B+i) C 77 and assume that

Gn = PgnlnP(hi,ki)^0.

Since f(P(h, k)) c P(h, k) for any/, hEHandkEN,

f(Gn) C /(Pg) n ( H f(P(K *»))) C Gn   for any/ E 77.

Applying the Lemma to «n+1 and G„ guarantees the existence of a <:„+, 6 iV

such that Gn n P(hn+X, k„+x) ¥= 0- Thus, by induction, g and any finite

subset of H have a common periodic point.   □
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Suppose that in Theorem 3.1 we require that d(f(x),f(y)) < d(g(x), g(y))

for at least one / G H whenever g(x) ^ g(y). We know by Corollary 2.3

above that g has a fixed point (P(g, 1) ¥= 0). A modification of the above

proof and Lemma shows that under the new hypothesis the set [P(g, 1) n

P(h, 1): h G H) has the finite intersection property, and hence has a non-

empty intersection by compactness. In fact, there is a unique(!) point \a ¡G \X

such that a = g(a) — h(a) for all h E H.

Moreover, Theorem 3.1 is a generalization of the following theorem by

Holmes, and hence of Bailey's Corollary 2 to Theorem 2 in [1].

Theorem (Holmes [3]). Let (X, d) be compact and C a commutative

semigroup of maps f: X -» X. Suppose there exist X E (0, 1) ande > 0 such that

(i) d(x, y) < e implies there exists n(x, y) E I+ and f E C for which

d(f(x), f"(y)) < Xd(x, y). Then each finite subfamily of C has a common

periodic point.

Now since by definition, a semigroup is closed with respect to the given

operation, we know /" G C when / G C in Holmes' Theorem. Consequently,

(i) can be simplified to read:

(ii) d(x, y) < e implies there exists fxo, G C for which d(f(x), f(y)) <

Xd(x,y).

Thus it is clear that Holmes' result follows from our Theorem 3.1 with g = i

(i(x) = x for x G X) and H = C U {/}• The following simple example

demonstrates that Theorem 3.1 indeed generalizes Holmes' result.

Example. Let X = [0, 1] and d(x,y) — |jc — y\. Define/: X -> X by

2x,     if 0 < x < \,

1, if \<x < 1.

Then

t«ix\ = Í 2"x,      if 0 < x < 2~",
J y '     ll, if 2-" <x < 1.

Let C = H = {/": n E N u {0}}, where/0 = /.

Then d(jn(0), j"(x)) > d(0, x) for any x E [0, 1] and any /" G C, so the

hypothesis of Holmes' Theorem is not satisfied. On the other hand, let e = \

and g = / in the statement of our Theorem 3.1. Let x,y G [0, 1] and choose

notation so that x < y. Then if y < \,

d(g(x),g(y)) = 2\x-y\>d(x,y),

and we let h = /. If y > \, g(y) = 1. Thus if 0 < d(g(x), g(y)) < e, 0 < g(x)

= 2x < 1 and 1 - 2x <\, so that x > 3/8. Consequently, j2(x) = j2(y) =

1, and we have d(g(x), g(y)) > 0 = d(J2(x), J2(y)). In this instance let h =

j2. In any event, we can choose h so that the hypothesis of Theorem 3.1 is

satisfied.
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4. Locally expansive maps generalized. A map /: (A, d) -» (A, d) is an

expansion if there exists a real r > 1 such that d(f(x), f(y)) > rd(x, y). In [2]

Borges considered continuous expansions on complete metric spaces, and

intimated that further study of expansions is in order. Rosenholtz studied

local expansions in [6] and locally expansive maps in [7]. In [7] he proved that

any open locally expansive map of a connected compact metric space into

itself has a fixed point. We prove:

Theorem 4.1. Let g be an open map of a compact metric space (A, d) onto

itself. If there exists e > 0 such that 0 < d(x, y) < e implies that for at least one

f E Cg, d(f(x),f(y)) < d(g(x), g(y)), then g has a periodic point.

Proof. By hypothesis, g is actually a local homeomorphism of a compact

metric space onto itself, and hence a covering projection. In fact (see [6]),

each a E X has a neighborhood Va such that g~x( Va) is the union of finitely

many mutually disjoint open sets Ua such that diam( Ua) < e, and g( Ua) =

Va. Let X be the Lebesgue number of the open covering ( Va: a E A}.

By Theorem 2.1 it suffices to prove:

0<d(g(x),g(y))<\   implies   d(g(x), g(y)) > d(f(z),f(y))   (.♦)

for some z E g~x(x) and some/ E Cg.

To this end, suppose 0 < d(g(x), g(y)) < A. By the definition of À we can

choose a EX such that g(x),g( y) E Va, and hence an open set Ua such that

diam(t/a) < e, g(Ua) = Va, and v E Ua. Since g(Ua) = Va, g(x) = g(z) for

some z E Ua. But z,y E Ua implies d(z,y) < e; moreover, 0 < d(z,y) since

g(x) =£ g(y). The hypothesis then yields/ E Cg for which

d(f(z),f(y)) < d(g(z), g(y)) = d(g(x), g(y)),

and (**) holds.   □

(Compare Theorem 4.1 to Theorem 1 in [5].)

Corollary. Let g be an open map of a compact metric space (A, d) onto

itself. If there exists e > 0 such that

0 < d(x,y) < e   implies   d(g"(x), gn(y)) < d(g(x), g(y))

for at least one nonnegative integer « = n(x, y), then g has a periodic point.

Note that with « = n(x, v) = 0 in the above corollary, we obtain the result

that any locally expansive open map of a compact metric space onto itself has

a periodic point.
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