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EDELSTEINE CONTRACnVTTY AND ATTRACTORS

LUDVIK JANOS, HWEI-MEI KO1 AND KOK-KEONG TAN2

Abstract. In this article an example is constructed to show that Theorem

1.1 of L. Janos [Canad. Math. Bull. 18 (1975), no. 5, 675-678] is false. A
proper formulation is obtained as follows. Theorem. If (A", t) is a metrizable

topological space, /: X -> X is continuous, and a G X, then the following

statements are equivalent:

(1) There exists a metric d compatible with r such that / is contractive

with respect to d and the sequence (/"(*))£°-1 converges to a for every

xex.
(2) The singleton {a} is an at trac tor for compact subsets under/.

Furthermore, under this proper formulation, we show that Theorem 32

Janos [Proc. Amer. Math. Soc. 61 (1976), 161-175] and Theorem 2.3 Janos

and J. L. Solomon [ibid. 71 (1978), 257-262], where the false Theorem 1.1 in
[2] has been quoted in the original proofs, remain valid.

1. Introduction. In recent years several authors tried to characterize dif-

ferent kinds of contractivity of self-maps /: X -> X on a metric space (X, d).

Since the hypotheses of a fixed point theorem for /usually contain conditions

of different natures such as

(a) topological properties of X,

(b) metric properties of (X, d),

(c) topological properties of/,

(d) metric properties of /,

it may be of interest to separate those conditions which are purely topological

in nature from those which are metric dependent. In [2], L. Janos attempted

to give such a characterization to a fixed point theorem of Edelstein [1]. In

this paper we first show that the main theorem (Theorem 1.1) in [2] is

unfortunately false by providing a counterexample in §2. Next by employing

the elegant concept of attractor, we offer in §3 a simple and nicely quotable

result illuminating the link between the metric dependent notion of Edelstein

contractivity and topological notion of attractor, and thus we provide a

proper formulation of Theorem 1.1 in [2]. As Theorem 1.1 has been used in
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showing Theorem 3.2 in [3] and Theorem 2.3 in [4], we show, in §4, that under

our new formulation, these two theorems remain valid.

2. Preliminaries and a counterexample.

Definition 1. Let (A, d) be a metric space and/: A -» A. Then

(i)/is nonexpansive with respect to d if d(f(x), /( v)) < d(x, y), Vx:,y E X.

(ii) / is Edelstein contractive [1] (or simply contractive if no confusion

arises) with respect to d if x ¥^ y implies d(f(x), /( y)) < d(x, y).

The following definition was first introduced by R. Nussbaum in [6].

Definition 2. Let A be a topological space and /: A -* A. Then a subset A

of A is an attractor for compact sets under/ if

(1) A is nonempty compact and/-invariant, and

(2) for any open set G containing A, and any compact set A in A, there

exists a positive integer A such that/"(A) c U, V« > A.

If (A, t) is a metrizable space, we shall denote by A7(t) the family of all

metrics on A which generate the topology t on A.

In [2, Theorem 1.1] L. Janos proclaimed the following:

(*) Let (A, t) be a metrizable topological space, /: A -> A be continuous

such that the sequence (f"(x))™_, converges for every x E X. Then the

following two statements are equivalent:

(i) There is d in M(t) such that/is contractive relative to d.

(ii) For every nonempty compact /-invariant subset Y of A the intersection

of all iterates /"( Y) is a one point set.

The following example shows that the statement (*) is, in fact, false.

Example. Let A = {(0, 0)} u {(l/n, m/ri): m = 0, 1,2, . . . , n2, « =

1, 2, . . . } be equipped with the (relative) usual topology t. Define/: A—» A

by

fi^, «) =/(0, 0) = (0, 0),   for « = 1, 2, . . . ,

ti-îH1.-^)- fo"" = °'>."'-'• ->•*.
It is readily seen that (a) / is continuous on A, (b) for each x E X, the

sequence (/"(•*))"_ x converges to the unique fixed point a = (0, 0), and (c)

H "_o/"(A) = {a). From (c) it follows that / satisfies (ii) of statement (*).

We shall now show that / does not satisfy (i) of statement (*). Indeed if there

were a metric d E M(t) such that/is contractive w.r.t. d, then /is nonexpan-

sive w.r.t. d. Since U = {x E X: \x — a\ < j) is an open neighbourhood of a,

there exists e > 0 such that B = {x E X: d(x, a) < e} c U. But then f"(B)

C B c U for every n = 1, 2, ... . On the other hand, there must exist a

positive integer « and a nonnegative integer m such that x = (l/n, m/n) E

B. Note that « > 2 and m < n/2 as B c U. It follows that f"~m(x) =

(l/n, 1) £ Í/which is a contradiction.

Our effort is thus to give a correct and proper formulation of the statement

(*)•
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3. Characterization of contractivity via attractor.

Theorem. Let (X, t) be a metrizable topological space, let j: X -» X be

continuous, and let a G X. Then the following statements are equivalent:

(1) There exists d in A/(t) such that f is contractive with respect to d and the

sequence (/"(*))"_, converges to afar every x E X;

(2) The singleton {a} is an attractor for compact subsets under f.

Furthermore if (X, t) is topologically complete, then the metric d in (1) can be

chosen to be complete.

Proof. (1)=>(2). Suppose that the singleton {a} is not an attractor for

compact sets under /; then there is a nonempty compact subset C of X and

an open set U containing a such that for any positive integer n, 3 integer

m > n such that f"(C) £ U. Thus we can choose an increasing sequence

(/!,),",  of positive integers and points x, G C such that f\x¡) G U for

i — 1, 2.Since C is compact, by passing to a subsequence if necessary,

we may assume (x,),~, converges to x0 E C. Let d E M(t) satisfy (1). Then

for arbitrary e > 0, there exist Nx, N2 such that

i>Nx=> d(f(x0), a) < e/2

and

/ > N2 => d(x¡, x0) < e/2.

Let N3 - max{Nx, N2). Then

j > AT3 => d(P(X¡), a) < d(P(Xi),P(x0)) + d(f%x0), a)

< d(xt, x0) + d(P(x0), a) < e/2 + e/2 = e.

This shows that the sequence (/^(x,-))" , converges to a which contradicts the

assumptions that/'Xx,) £ U, Vi, and U is a neighbourhood of a. Hence {a}

is an attractor for compact subsets under/.

(2)=>(1). First we observe that (/"(x))~_, converges to a for all x E X,

since {a} is an attractor for compact sets under/. Let d G M(t) (choose a

complete metric d in A/(t) if X is topologically complete). Define

d*(x, y) = sup{d(f(x),f(y)): n = 0, 1, 2, . . . ), Vx,y G X.

d* is well defined since f(x) ->a,Vxe X. One can easily prove that d* is a

metric on X such that d* > d and that / is nonexpansive w.r.t. d*. To show

that d* G M(t), that is to show d and d* axe equivalent, it suffices to show,

for any sequence (x„)"_, in X and x0 E X, d(xn, x0) -> 0 as n -» oo =>

d*(x„,x0)-^0 as n-»co. Suppose on the contrary that d(xn, x^-^O but

d*(xn, x0) does not converge to 0. By passing to a subsequence, we may

assume without loss of generality that for some e > 0

d*(xn, x0) > e   for all n = 1, 2, .... (f)

For each «,3 a positive integer k(n) such that

d*(xn,x0) = d(fk^(x„),fk^(x0)).
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Let ,4 = {k(n):n = 1,2,...}.

Case 1. Suppose the set A is a finite set. Then there exists a positive integer

k and a subsequence (&(«,))," i of (&(«))"_ i such that k(n¡) = k, for i =

1, 2,.... As/is continuous, we have

d*(Xni,x0) = d(fk^(Xni),fk^(x0)) = d(fk(Xni),fk(xo))-*0   as/-» oo.

This contradicts (f ).

Case 2. Suppose the set A is an infinite set. Then we can extract a strictly

increasing subsequence (&(«,))," , from A. Let C = {xn: « = 1, 2, .. . } U

{x0). Then C is a compact set. As {a} is an attractor for compact sets under

/, then for this e, 3 a positive integer m such that

n > m ^f(C) c B(a, e/2) = { v E A: ¿( v, a) < e/2}.

Let i0 be such that / > i0 => k(n¡) > m. Then

/ > i0=>d*(Xni, x0) = ¿(/^KX/^U))

<4/^>^),a) + i/(/^>(x0),û)

< e/2 + e/2 = e.

This again contradicts (f).

Therefore </* and d are equivalent. To produce a metric satisfying (1), let

d**(x, y) = 2 ¿r </*(/"(*),/''(>')),   Vx,y E A.

Then d** is a metric on A such that / is nonexpansive w.r.t. d**. As

d* < d** < 2¿*, we see that d** E Af(r). To prove that/is contractive w.r.t.

d**, assume that x ^ y and ¿**(/(x),/(y)) = </**(x, y). Then from the non-

expansiveness of/w.r.t. d** this implies that

d*(f"+\x),r+x(y)) = ¿»(/"(xX/^y)),    V« = 0, 1, 2,....

That is,

d*(f(x),fn( y)) - d*(jc, v) ^0, V« = 1, 2, ... .

This contradicts the fact that d*(f"(x), f(y)) -► 0 as « -» oo (because/"(x) -^

a, Vx E A). Hence / is contractive w.r.t. d**. Furthermore, from the facts

that d < d* < rf** and that d,d* and J** are equivalent, we see that if d is a

complete metric, then both d* and </** will be complete. This completes the

proof.

Remark 1. From the proof of (2) => (1), we see that if d is bounded, then the

metric d** so constructed is also bounded.

Remark 2. From the proof of (1) => (2), we in fact show that the following

statement (3) implies (2) in the above theorem:

(3) There exists d E A7(t) such that / is nonexpansive w.r.t. d and the

sequence (/"(x))"_, converges to a for every x E A.

Since clearly (1) implies (3), the conditions (1), (2) and (3) are equivalent

under the assumptions of the above theorem.
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4. Corollaries. Let (X, t) be a metrizable topological space, let/: X -> X be

continuous, and let A/ c X be a nonempty compact, /-invariant set. Let

X/ M be the quotient space equipped with the quotient topology t* arising

from X by identifying M with a point, and let ir: X -* X/ M be the natural

projection and/*: X/M-^X/Mbe the induced map of /such that w »/ —

J* ° ir. The following results can be found in [4]:

Proposition 1 (Lemma 2.2. in [4]). (X/M, t*) is metrizable.

Proposition 2 (Theorem 2.1. in [4]). M is a« attractor jor compact sets

under f if and only if [a*), with a* = tr(M), is an attractor for compact sets

under /*.

From Propositions 1 and 2, the following result (Theorem 2.3 in [4]) is an

immediate consequence of our theorem in §3 (its proof was originally based

on the false result Theorem 1.1 in [2]).

Corollary 1. Let (X, t) be a metrizable topological space, and let J: X -» X

be continuous. I j M E X is an attractor jor compact sets under j, then there

exists a metric d*, compatible with the topology t* on X/M, such that J* is

contractive w.r.t. d*.

Denote by a( Y) the Kuratowski measure of noncompactness of a subset Y

of a bounded metric space (X, d) (see [5] and [7]). We say that /: X -» X is

condensing if / is continuous and for any nonempty nontotally bounded

subset Y of X, a(J( Y)) < a( Y). The following result is contained in the proof

of Theorem 3.2 in [3]:

Proposition 3. Let (X, d) be a bounded complete metric space, and let j:

X -* X be condensing such that

d(J(x),j(y))<x2{d(x,J(x)) + d(y,J(y)))

whenever x,y G X and x =£y. Then

(\)jhas a unique fixed point a G X such that j"(x) -» a jor every x G X, and

(ii) jor every nonempty compact J-invariant subset Y of X, n^oJ"(Y) =

(a).

We shall now be able to show below that, even though the original proof of

Theorem 3.2 in [3] was based on the false Theorem 1.1 in [2], its strengthened

conclusion remains valid by applying our theorem in §3.

Corollary 2. Let (X, d) be a bounded complete metric space, and let j:

X -* X be condensing such that

d(J(x),J(y))<x2{d(x,J(x)) + d(y,J(y)))

whenever xy G X with x ¥=y. Then

(\)j has a unique fixed point a G X such thatj"(x) -+ajor every x G X, and

(ii) there exists a bounded complete metric d* on X which is equivalent to d

such that j is contractive w.r.t. d*.
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Proof. By Proposition 3, we need only to show that (ii) holds. To this end,

we prove that {a) is an attractor for compact sets under /. Let C be any

nonempty compact subset of A. Since a(C u B) = a(B) for any B c X, we

conclude that

«( U/"(c)) - «(c u U/'(c)J

-«(Ûw))-«(/(Ûr(c))).
Thus U"_o/"(C) is totally bounded since / is condensing. Therefore

y = U£°_o/"(C) is compact and/-invariant, since (X,d) is complete. By

Proposition 3 (ii) n,".0Alr)"{«}- Since f(Y) 3 fn+1(Y) for « =

0,1,2, . . . and each/"( Y) is compact, given any open neighbourhood U of a,

there exists a positive integer A such that fN( Y) c U. It follows that

« > N=*fa(C) Ef(Y) cfN(Y) c £/.

This shows that {a} is an attractor for compact sets under/. Thus (ii) follows

from our Theorem and Remark 1 in §3.
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